首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract

Modelling and prediction of hydrological processes (e.g. rainfall–runoff) can be influenced by discontinuities in observed data, and one particular case may arise when the time scale (i.e. resolution) is coarse (e.g. monthly). This study investigates the application of catastrophe theory to examine its suitability to identify possible discontinuities in the rainfall–runoff process. A stochastic cusp catastrophe model is used to study possible discontinuities in the monthly rainfall–runoff process at the Aji River basin in Azerbaijan, Iran. Monthly-averaged rainfall and flow data observed over a period of 20 years (1981–2000) are analysed using the Cuspfit program. In this model, rainfall serves as a control variable and runoff as a behavioural variable. The performance of this model is evaluated using four measures: correlation coefficient, log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC). The results indicate the presence of discontinuities in the rainfall–runoff process, with a significant sudden jump in flow (cusp signal) when rainfall reaches a threshold value. The performance of the model is also found to be better than that of linear and logistic models. The present results, though preliminary, are promising in the sense that catastrophe theory can play a possible role in the study of hydrological systems and processes, especially when the data are noisy.

Citation Ghorbani, M. A., Khatibi, R., Sivakumar, B. & Cobb, L. (2010) Study of discontinuities in hydrological data using catastrophe theory. Hydrol. Sci. J. 55(7), 1137–1151.  相似文献   

2.
Abstract

The hydrological response of a small agroforestry catchment in northwest Spain (Corbeira catchment, 16 km2) is analysed, with particular focus on rainfall events. Fifty-four rainfall–runoff events, from December 2004 to September 2007, were used to analyse the principal hydrological patterns and show which factors best explain the hydrological response. The nonlinearity between rainfall and runoff showed that the variability in the hydrological response of the catchment was linked to the seasonal dynamics of the rainfall and, to a lesser extent, to evapotranspiration. The runoff coefficient, estimated as the ratio between direct runoff and rainfall volume, on an event basis, was analysed as a function of rainfall characteristics (amount and intensity) and the initial catchment state conditions prior to an event, such as pre-event baseflow and antecedent rainfall index. The results revealed that the hydrological response depends both on the soil humidity conditions at the start of the event and on rainfall amount, whereas rainfall intensity presented only a significant correlation with discharge increment. The antecedent conditions seem to be a key point in runoff production, and they explain much of the response. The hydrographs are characterized by a steep rising limb, a relatively narrow peak discharge and slow recession limb. These data and the observations suggest that the subsurface flow is the dominant runoff process.

Editor Z.W. Kundzewicz; Associate editor T. Wagener

Citation Rodríguez-Blanco, M.L., Taboada-Castro, M.M. and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459.  相似文献   

3.
Abstract

Statistical tests have been widely used for several decades to identify and test the significance of trends in runoff and other hydrological data. The Mann-Kendall (M-K) trend test is commonly used in trend analysis. The M-K test was originally proposed for random data. Several variations of the M-K test, as well as pre-processing of data for use with it, have been developed and used. The M-K test under the scaling hypothesis has been developed recently. The basic objective of the research presented in this paper is to investigate the trends in Malaysian monthly runoff data. Identification of trends in runoff data is useful for planning water resources projects. Existence of statistically significant trends would also lead to identification of possible effects of climate change. Monthly runoff data for Malaysian rivers from the past three decades are analysed, in both five-year segments and entire data sequences. The five-year segments are analysed to investigate the variability in trends from one segment to another in three steps: (1) the M-K tests are conducted under random and correlation assumptions; (2) the Hurst scaling parameter is estimated and tested for significance; and (3) the M-K test under the scaling hypothesis is conducted. Thus the tests cover both correlation and scaling. The results show that the number of significant segments in Malaysian runoff data would be the same as those found under the assumption that the river flow sequences are random. The results are also the same for entire sequences. Thus, monthly Malaysian runoff data do not have statistically significant trends. Hence there are no indications of climate change in Malaysian runoff data.

Citation Rao, A. R., Azli, M. & Pae, L. J. (2011) Identification of trends in Malaysian monthly runoff under the scaling hypothesis. Hydrol. Sci. J. 56(6), 917–929.  相似文献   

4.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

5.
Abstract

The objective of this study is to analyse three rainfall–runoff hydrological models applied in two small catchments in the Amazon region to simulate flow duration curves (FDCs). The simple linear model (SLM) considers the rainfall–runoff process as an input–output time-invariant system. However, the rainfall–runoff process is nonlinear; thus, a modification is applied to the SLM based on the residual relationship between the simulated and observed discharges, generating the modified linear model (MLM). In the third model (SVM), the nonlinearity due to infiltration and evapotranspiration is incorporated into the system through the sigmoid variable gain factor. The performance criteria adopted were a distance metric (δ) and the Nash-Sutcliffe coefficient (R2) determined between simulated and observed flows. The good results of the models, mainly the MLM and SVM, showed that they could be applied to simulate FDCs in small catchments in the Amazon region.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Blanco, C.J.C., Santos, S.S.M., Quintas, M.C., Vinagre, M.V.A., and Mesquita, A.L.A., 2013. Contribution to hydrological modelling of small Amazonian catchments: application of rainfall–runoff models to simulate flow duration curves. Hydrological Sciences Journal, 58 (7), 1–11.  相似文献   

6.
Abstract

Transfer function models of the rainfall–runoff relationship with various complexities are developed to investigate the hydrological behaviour of a tropical peat catchment that has undergone continuous drainage for a long time. The study reveals that a linear transfer function model of order one and noise term of ARIMA (1,0,0) best represents the monthly rainfall–runoff relationship of a drained peat catchment. The best-fitted transfer function model is capable of illustrating the cumulative hydrological effects of the catchment when subjected to drainage. Transfer function models of daily rainfall–runoff relationships for each year of the period 1983–1993 are also developed to decipher the changes in hydrological behaviour of the catchment due to drainage. The results show that the amount of rain water temporarily stored in the peat soil decreased and the catchment has become more responsive to rainfall over the study period.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Katimon, A., Shahid, S., Abd Wahab, A.K., and Shabri, A., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. 2: Time series transfer function modelling approach. Hydrological Sciences Journal, 58 (6), 1310–1325.  相似文献   

7.
ABSTRACT

A hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed based on the combined concept of Clark’s unit hydrograph and its spatial decomposition methods, incorporating refined spatially variable flow dynamics to implement hydrological simulation for spatially distributed rainfall–runoff flow. In Distributed-Clark, the Soil Conservation Service (SCS) curve number method is utilized to estimate spatially distributed runoff depth and a set of separated unit hydrographs is used for runoff routing to obtain a direct runoff flow hydrograph. Case studies (four watersheds in the central part of the USA) using spatially distributed (Thiessen polygon-based) rainfall data of storm events were used to evaluate the model performance. Results demonstrate relatively good fit to observed streamflow, with a Nash-Sutcliffe efficiency (ENS) of 0.84 and coefficient of determination (R2) of 0.86, as well as a better fit in comparison with outputs of spatially averaged rainfall data simulations for two models including HEC-HMS.  相似文献   

8.
Abstract

The generation of reliable quantitative precipitation estimations (QPEs) through use of raingauge and radar data is an important issue. This study investigates the impacts of radar QPEs with different densities of raingauge networks on rainfall–runoff processes through a semi-distributed parallel-type linear reservoir rainfall–runoff model. The spatial variation structures of the radar QPE, raingauge QPE and radar-gauge residuals are examined to review the current raingauge network, and a compact raingauge network is identified via the kriging method. An analysis of the large-scale spatial characteristics for use with a hydrological model is applied to investigate the impacts of a raingauge network coupled with radar QPEs on the modelled rainfall–runoff processes. Since the precision in locating the storm centre generally represents how well the large-scale variability is reproduced; the results show not only the contribution of kriging to identify a compact network coupled with radar QPE, but also that spatial characteristics of rainfalls do affect the hydrographs.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Pan, T.-Y., Li, M.-Y., Lin, Y.-J., Chang, T.-J., Lai, J.-S., and Tan, Y.-C., 2014. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrological Sciences Journal, 59 (7), 1335–1352. http://dx.doi.org/10.1080/02626667.2014.923969  相似文献   

9.
Abstract

Pakistan has suffered a devastating flood disaster in 2010. In the Kabul River basin (92 605 km2), large-scale riverine and flash floods caused destructive damage with more than 1100 casualties. This study analysed rainfall–runoff and inundation in the Kabul River basin with a newly developed model that simulates the processes of rainfall–runoff and inundation simultaneously based on two-dimensional diffusion wave equations. The simulation results showed a good agreement with an inundation map produced based on MODIS for large-scale riverine flooding. In addition, the simulation identified flash flood-affected areas, which were confirmed to be severely damaged based on a housing damage distribution map. Since the model is designed to be used even immediately after a disaster, it can be a useful tool for analysing large-scale flooding and to provide supplemental information to agencies for relief operations.

Editor Z.W. Kundzewicz

Citation Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S. and Fukami, K., 2012. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal, 57 (2), 298–312.  相似文献   

10.
Abstract

The decrease in runoff of the Merguellil basin, Tunisia recorded during the decade 1989–1998 led to the study of several time series derived from daily rainfall. It was found that variability characteristics related to daily rainfall greater than 30 mm are significantly different among successive time periods. In addition, the probability distributions of these rains, recorded at different raingauge sites, are significantly different between the period 1976–1989 and the prior and posterior observation periods. Furthermore, the surface covered by daily rains greater than 30 mm decreased between 1976 and 1989. It was also noted that the probability distributions of the surfaces covered changed significantly after 1976. The combination of human action and pluviometric variability (rainfall increase in the period 1989–1998, notably the increase in the number of days of rainfall greater than 30 mm) may explain the decrease in runoff of Merguellil Wadi.  相似文献   

11.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

12.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

13.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

14.
Abstract

Abstract Monthly precipitation and temperature trends of 51 stations in the Yangtze basin from 1950–2002 were analysed and interpolated. The Mann-Kendall trend test was applied to examine the monthly precipitation and temperature data. Significant positive and negative trends at the 90, 95 and 99% significance levels were detected. The monthly mean temperature, precipitation, summer precipitation and monthly mean runoff at Yichang, Hankou and Datong stations were analysed. The results indicate that spatial distribution of precipitation and temperature trends is different. The middle and lower Yangtze basin is dominated by upward precipitation trend but by somewhat downward temperature trend; while downward precipitation trend and upward temperature trend occur in the upper Yangtze basin. This is because increasing precipitation leads to increasing cloud coverage and, hence, results in decreasing ground surface temperature. Average monthly precipitation and temperature analysis for the upper, middle and lower Yangtze basin, respectively, further corroborate this viewpoint. Analysis of precipitation trend for these three regions and of runoff trends for the Yichang, Hankou and Datong stations indicated that runoff trends respond well to the precipitation trends. Historical flood trend analysis also shows that floods in the middle and lower Yangtze basin are in upward trend. The above findings indicate that the middle and lower Yangtze basin is likely to face more serious flood disasters. The research results help in further understanding the influence of climatic changes on floods in the Yangtze basin, providing scientific background for the flood control activities in large catchments in Asia.  相似文献   

15.
Abstract

This study investigates the characteristics of hydrograph components from a watershed in Taiwan. Hydrograph components were modelled by using a model of three serial reservoirs with one parallel reservoir. Mean rainfall was calculated by using the block kriging method. The model parameters for 38 events were calibrated by using the shuffled complex evolution optimization algorithm. The model verification was made using 18 events. Based on the study results, the following findings were obtained: (1) for single-peak events, times to peak of hydrograph components are an increasing power function of the peak time of rainfall; (2) peak discharges of hydrograph components are linearly proportional to that of total runoff, and the ratios of quick and slow runoff are approximately 83% and 17% of total runoff, respectively; and (3) the total volume of quick runoff component is 52% of total runoff and that of slow runoff is 27%.

Editor D. Koutsoyiannis

Citation Li, Y.-J., Cheng, S.-J. Pao, T.-L. and Bi, Y.-J., 2012. Relating hydrograph components to rainfall and streamflow: a case study from northern Taiwan. Hydrological Sciences Journal, 57 (5), 861–877.  相似文献   

16.
《水文科学杂志》2013,58(1):230-237
Abstract

Hung & Wang (2005a,b) base their approach on successive steps related to a kind of geomorphometric modelling, the deduction of a rainfall—runoff transfer function, and the application to a Taiwanese basin subject to typhoons. Several conceptual points of each of these steps and their propagation through the whole approach are discussed; referring to the likelihood of the proposed separately random self-similar river networks, the deduction of width function-based unit hydrographs, and the accounting for variability of rainfall and of induced runoff.  相似文献   

17.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

18.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

19.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

20.
ABSTRACT

The trends in hydrological and climatic time series data of Urmia Lake basin in Iran were examined using the four different versions of the Mann-Kendall (MK) approach: (i) the original MK test; (ii) the MK test considering the effect of lag-1 autocorrelation; (iii) the MK test considering the effect of all autocorrelation or sample size; and (iv) the MK test considering the Hurst coefficient. Identification of hydrological and climatic data trends was carried out at monthly and annual time scales for 25 temperature, 35 precipitation and 35 streamflow gauging stations selected from the Urmia Lake basin. Mann-Kendall and Pearson tests were also applied to explore the relationships between temperature, precipitation and streamflow trends. The results show statistically significant upward and downward trends in the annual and monthly hydrological and climatic variables. The upward trends in temperature, unlike streamflow, are much more pronounced than the downward trends, but for precipitation the behaviour of trend is different on monthly and annual time scales. Furthermore, the trend results were affected by the different approaches. Specifically, the number of stations showing trends in hydrological and climatic variables decreased significantly (up to 50%) when the fourth test was considered instead of the first and the absolute value of the Z statistic for most of the time series was reduced. The results of correlations between streamflow and climatic variables showed that the streamflow in Urmia Lake basin is more sensitive to changes in temperature than those of precipitation. The observed decreases in streamflow and increases in temperature in the Urmia Lake basin in recent decades may thus have serious implications for water resources management under the warming climate with the expected population growth and increased freshwater consumption in this region.
Editor Z. W. Kundzewicz; Associate editor Q. Zhang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号