首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms.
Editor Z.W. Kundzewicz  相似文献   

2.
Abstract

We present a procedure for estimating Q95 low flows in both gauged and ungauged catchments where Q95 is the flow that is exceeded 95% of the time. For each step of the estimation procedure, a number of alternative methods was tested on the Austrian data set by leave-one-out cross-validation, and the method that performed best was used in the final procedure. To maximise the accuracy of the estimates, we combined relevant sources of information including long streamflow records, short streamflow records, and catchment characteristics, according to data availability. Rather than deriving a single low flow estimate for each catchment, we estimated lower and upper confidence limits to allow local information to be incorporated in a practical application of the procedure. The components of the procedure consist of temporal (climate) adjustments for short records; grouping catchments into eight seasonality-based regions; regional regressions of low flows with catchment characteristics; spatial adjustments for exploiting local streamflow data; and uncertainty assessment. The results are maps of lower and upper confidence limits of low flow discharges for 21 000 sub-catchments in Austria.  相似文献   

3.
Despite uncertainties and errors in measurement, observed peak discharges are the best estimate of the true peak discharge from a catchment. However, in ungauged catchments, the catchment response time is a fundamental input to all methods of estimating peak discharges; hence, errors in estimated catchment response time directly impact on estimated peak discharges. In South Africa, this is particularly the case in ungauged medium to large catchments where practitioners are limited to use empirical methods that were calibrated on small catchments not located in South Africa. The time to peak (TP), time of concentration (TC) and lag time (TL) are internationally the most frequently used catchment response time parameters and are normally estimated using either hydraulic or empirical methods. Almost 95% of all the time parameter estimation methods developed internationally are empirically based. This paper presents the derivation and verification of empirical TP equations in a pilot scale study using 74 catchments located in four climatologically different regions of South Africa, with catchment areas ranging from 20 km2 to 35 000 km2. The objective is to develop unique relationships between observed TP values and key climatological and geomorphological catchment predictor variables in order to estimate catchment TP values at ungauged catchments. The results show that the derived empirical TP equation(s) meet the requirement of consistency and ease of application. Independent verification tests confirmed the consistency, while the statistically significant independent predictor variables included in the regressions provide a good estimation of catchment response times and are also easy to determine by practitioners when required for future applications in ungauged catchments. It is recommended that the methodology used in this study should be expanded to other catchments to enable the development of a regional approach to improve estimation of time parameters on a national‐scale. However, such a national‐scale application would not only increase the confidence in using the suggested methodology and equation(s) in South Africa, but also highlights that a similar approach could be adopted internationally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

In catchments characterized by spatially varying hydrological processes and responses, the optimal parameter values or regions of attraction in parameter space may differ with location-specific characteristics and dominating processes. This paper evaluates the value of semi-distributed calibration parameters for large-scale streamflow simulation using the spatially distributed LISFLOOD model. We employ the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm to infer the calibration parameters using daily discharge observations. The resulting posterior parameter distribution reflects the uncertainty about the model parameters and forms the basis for making probabilistic flow predictions. We assess the value of semi-distributing the calibration parameters by comparing three different calibration strategies. In the first calibration strategy uniform values over the entire area of interest are adopted for the unknown parameters, which are calibrated against discharge observations at the downstream outlet of the catchment. In the second calibration strategy the parameters are also uniformly distributed, but they are calibrated against observed discharges at the catchment outlet and at internal stations. In the third strategy a semi-distributed approach is adopted. Starting from upstream, parameters in each subcatchment are calibrated against the observed discharges at the outlet of the subcatchment. In order not to propagate upstream errors in the calibration process, observed discharges at upstream catchment outlets are used as inflow when calibrating downstream subcatchments. As an illustrative example, we demonstrate the methodology for a part of the Morava catchment, covering an area of approximately 10 000 km2. The calibration results reveal that the additional value of the internal discharge stations is limited when applying a lumped parameter approach. Moving from a lumped to a semi-distributed parameter approach: (i) improves the accuracy of the flow predictions, especially in the upstream subcatchments; and (ii) results in a more correct representation of flow prediction uncertainty. The results show the clear need to distribute the calibration parameters, especially in large catchments characterized by spatially varying hydrological processes and responses.  相似文献   

5.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

6.
Abstract

The chemistry of streamwater, bulk precipitation, throughfall and soil waters has been studied for three years in two plantation forest and two moorland catchments in mid-Wales. Na and CI are the major ions in streamwater reflecting the maritime influence on atmospheric inputs. In all streams, baseflow is characterised by high pH waters enriched in Ca, Mg, Si and HCO3. Differences in baseflow chemistry between streams reflect the varying extent of calcite and base metal sulphide mineralization within the catchments. Except for K, mean stream solute concentrations are higher in the unmineralized and mineralized forest catchments compared with their respective grassland counterparts. In the forest streams, storm flow concentrations of H+ are approximately 1.5 times and Al four times higher than in the moorland streams. Annual catchment losses of Na, Cl, SO4, NO3, Al and Si are greatest in the forest streams. In both grassland and forest systems, variations in stream chemistry be explained by mixing waters from different parts of the catchment, although NO3 concentrations may additionally be controlled by N transformations occurring between soils and streams. Differences in stream chemistry and solute budgets between forest and moorland catchments are related to greater atmospheric scavenging by the trees and changes in catchment hydrology consequent on afforestation. Mineral veins within the catchment bedrock can significantly modify the stream chemical response to afforestation.  相似文献   

7.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

8.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

9.
Highly seasonal boreal catchments are hydrologically complex and generally data poor and, hence, are ripe for investigation using tracer‐aided hydrologic models. The influence of physiography on isotopic metrics was assessed to identify the catchment characteristics dominating evaporative enrichment. A multiyear stable isotope of water dataset was collected at the outlets of 16 boreal catchments in central Canada ranging in area from 12 to 15,282 km2. Physiographic characteristics were obtained through raster analysis of freely available land cover images, stream networks, and digital elevation models. Correlation analysis indicated that as the percentage coverage of open water increased, so too did the evaporative effects observed at the catchment outlet. Correlation to wetland metrics indicated that increasing the percentage coverage of wetlands can reduce or increase evaporative effects observed, depending on the isotopic metric used and the corresponding drainage density, catchment slope, and presence of headwater lakes. The slopes of river evaporative‐mixing lines appear to reflect multifaceted relationships, strongest between catchment slope, headwater lakes, and connected wetlands, whereas mean line‐conditioned excess is more directly linked to physiographic variables. Hence, the slopes of river evaporative‐mixing lines and mean line‐conditioned excess are not interchangeable metrics of evaporative enrichment in a catchment. Relationships identified appear to be independent of catchment scale. These results suggest that adequate inclusion of the distribution of open water throughout a catchment, adequate representation of wetland processes, catchment slope, and drainage density are critical characteristics to include in tracer‐aided hydrologic models in boreal environments in order to minimize structural uncertainty.  相似文献   

10.
The use of drainage ditches on farmland has an impact on erosion processes both on‐site and off‐site, though their environmental impacts are not unequivocal. Here we study the runoff response and related rill erosion after installing drainage ditches and assess the effects of stone bunds in north Ethiopia. Three different land management systems were studied in 10 cropland catchments around Wanzaye during the rainy season of 2013: (1) the exclusive use of drainage ditches (locally called feses), (2) the exclusive use of stone bunds, and (3) a mixture of both systems. Stone bunds are an effective soil and water conservation technique, making the land more resistant against on‐site erosion, and allowing feses to be installed at a larger angle with the contour. The mean rill volumes for the 10 studied cropland catchments during the rainy season of 2013 was 3.73 ± 4.20 m3 ha?1 corresponding to a soil loss of 5.72 ± 6.30 ton ha?1. The establishment of feses causes larger rill volumes (R = 0.59, N = 10), although feses are perceived as the best way to avoid soil erosion when no stone bunds are present. The use of feses increases event‐based runoff coefficients (RCs) on cropland from c. 5% to values up to 39%. Also, a combination of low stone bund density and high feses density results in a higher RC, whereas catchments with a high stone bund density and low feses density have a lower RC. Peak runoff discharges decrease when stone bund density increases, whereas feses density is positively related to the peak runoff discharge. A multiple linear relation in which both feses and stone bund densities are used as explanatory variable, performs best in explaining runoff hydrograph peakedness (R2 = 83%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

There has been a trend in recent years towards the development and popularity of physically-based deterministic models. However, the application of such models is not without difficulties. This paper investigates the usefulness of a conceptual single-event model for simulating floods from catchments covering a wide variety of climatic and physiographic areas. The model has been calibrated on a group of catchments and the calibrated parameter values related to physical catchment indices. The resulting quantitative relationships are assessed with respect to their value for estimating the parameter values of the model when calibration is not possible. The results indicate that the technique is likely to provide flood estimations for medium sized catchments (5–150 km2) that are more reliable than several flood estimation methods currently in use in South Africa.  相似文献   

12.
ABSTRACT

The clustering of catchments is important for prediction in ungauged basins, model parameterization and watershed development and management. The aim of this study is to explore a new measure of similarity among catchments, using a data depth function and comparing it with catchment clustering indices based on flow and physical characteristics. A cluster analysis was performed for each similarity measure using the affinity propagation clustering algorithm. We evaluated the similarity measure based on depth–depth plots (DD-plots) as a basis for transferring parameter sets of a hydrological model between catchments. A case study was developed with 21 catchments in a diverse New Zealand region. Results show that clustering based on the depth–depth measure is dissimilar to clustering on catchment characteristics, flow, or flow indices. A hydrological model was calibrated for the 21 catchments and the transferability of model parameters among similar catchments was tested within and between clusters defined by each clustering method. The mean model performance for parameters transferred within a group always outperformed those from outside the group. The DD-plot based method was found to produce the best in-group performance and second-highest difference between in-group and out-group performance.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Viglione  相似文献   

13.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   

14.
ABSTRACT

The paper deals with the estimation of the probability distribution of the yearly maximum of the peak discharge Q by means of the distribution of the maximum of the daily discharge q and the distribution of the ratio R = Q/q. The study was carried out for some catchments in Tuscany, analysing the dependence of the parameters of R on the geomorphic catchment parameters. The values of the discharge Q, relevant to an assigned return period, obtained by the methods given herein agree rather well (the error is about 20%) with those directly obtained from the observed values of Q.  相似文献   

15.
Seasonality indices for regionalizing low flows   总被引:2,自引:0,他引:2  
G. Laaha  G. Blschl 《水文研究》2006,20(18):3851-3878
In this study we examine three seasonality indices for their potential in regionalizing low flows. The indices are seasonality histograms (SHs) that represent the monthly distribution of low flows, a cyclic seasonality index (SI) that represents the average timing of low flows within a year, and the seasonality ratio (SR), which is the ratio of summer and winter low flows. The rationale of examining these indices is the recognition that summer and winter low flows are subject to important differences in the underlying hydrological processes. We analyse specific low flow discharges q95, i.e. the specific discharge that is exceeded on 95% of all days at a particular site. Data from 325 subcatchments in Austria, ranging in catchment area from 7 to 963 km2, are used in the analysis. In a first step, three seasonality indices are compared. Their spatial patterns can be interpreted well on hydrological grounds. In a second step, the indices are used to classify the catchments into two, three, and eight regions based on different combinations of the indices. In a third step, the value of the seasonality indices for low flow regionalization is examined by comparing the cross‐validation performance of multiple regressions between low flows and catchment characteristics. The regressions make use of the three seasonality‐based classifications. The results indicate that grouping the study area into two regions and three regions and separate regressions in each region gives the best performance. A global regression model yields the lowest performance and a global regression model that uses different calibration coefficients in each of the eight regions only performs slightly better. This suggests that separate regression models in each of the regions are to be preferred over a global model in order to represent differences in the way catchment characteristics are related to low flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Synchronously and accurately estimating the flood discharges and dynamic changes in the fluid density is essential for hydraulic analysis and forecasting of flash floods, as well as for risk assessment. However, such information is rare for steep mountain catchments, especially in regions that are hotspots for earthquakes. Therefore, six hydrological monitoring sites were established in the main stream and tributaries of the 78.3‐km2 Longxi River catchment, an affected region of the Wenchuan earthquake region in China. Direct real‐time monitoring equipment was installed to measure the flow depths, velocities, and fluid total pressures of the flood hydrographs. On the basis of field measurements, real‐time mean cross‐sectional velocities during the flood hydrographs could be derived from easily obtainable parameters: cross‐sectional maximum velocities and the calibrated dimensionless parameter Kh . Real‐time discharges were determined on the basis of a noncontact method to establish the effective rating curves of this mountainous stream, ranging from 1.46 to 386.34 m3/s with the root mean square errors of ≤10.22 m3/s. Compared with the traditional point‐velocity method and empirical Manning's formula, the proposed noncontact method was reliable and safe for monitoring whole flood hydrographs. Additionally, the real‐time fluid density during the flood hydrographs was calculated on the basis of the direct monitoring parameters for fluid total pressures and water depths. During the flood hydrograph, transient flow behaviour with higher fluid density generally occurred downstream during the flood peak periods when the flow was in the supercritical flow regime. The observed behaviour greatly increased the threat of damage to infrastructure and human life near the river. Thus, it is important to accurately estimate flood discharge and identify for fluid densities so that people at risk from an impending flash flood are given reliable, advanced warning.  相似文献   

17.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

18.
There is considerable interest in large‐scale spatial patterns of sediment transport in catchments, and this topic is often approached using terrain‐based modelling. In such models topography influences the discharge of overland flow and its sediment transport capacity. The sediment transport capacity of overland flow is commonly expressed as a power function of slope and discharge (i.e. qs=k1qβSγ). The relationship between discharge and contributing area can also be expressed as a power function. Several reviews reveal a limited range of values for the two exponents β and γ. In this paper we examine the sensitivity of catchment‐scale patterns of sediment delivery to valley floors to a range of sediment transport capacity and hillslope hydrology parameterizations, using two catchments on the southern tablelands of New South Wales. The results indicate that, over the limited range of β and γ identified within the literature, sediment deliveries to valley floors across the two catchments are similar for all but one of five sediment transport capacity relationships. The patterns are dominated by the trend in slope through each catchment. The sensitivity to hillslope hydrology of predicted sediment delivery patterns is strong in the catchment with systematic variation in unit hillslope area, and weak in the catchment for which there are no systematic trends in unit hillslope area. We believe there is less experimental evidence to restrict choice of hillslope hydrology parameters than there is for sediment transport capacity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment’s travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2–3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.  相似文献   

20.
Abstract

This paper refers to the quantification and prediction of the sedimentation rate of 26 hillside-dam reservoirs in Central Tunisia. The objectives of the study are to develop a simple and practical methodology to identify controlling factors of sedimentation, and to propose a regionalization from the study sites. Principal component analysis (PCA) and complementary multi-dimensional statistical methods are used to relate highly variable area-specific sediment yield to hydro-morphometric, lithological, geomorphological and anthropogenic characteristics of catchments. It appears that catchment area is not the main controlling factor of sedimentation in the studied area. The overall slope index, drainage network characteristics and runoff parameters are also important in characterizing sediment yield. Applied to the annual sedimentation rate series, PCA resulted in retaining the first three principal axes, explaining 65% of the total variance. Statistical methods showed that the overall slope index, the total drainage length, the compacity index and the runoff parameters are as important for the sedimentation quantification. This allowed a graphical clustering of the study zone into three distinct groups having similar behaviours: (i) watersheds characterized by high sediment transport rates and high runoff coefficients, (ii) basins distinguished by relatively low values of both flow discharge and sediment transport rates, and (iii) watersheds with an intermediate sediment yield, especially characterized by relatively high relief. In a second step, a multiple regression model including the four characteristic catchment properties was developed, presenting a valuable tool to predict area-specific sediment yield from catchments in central Tunisia. This model shows reasonable efficiency with an absolute prediction error of 81%.

Citation Ayadi, I., Abida, H., Djebbar, Y. & Mahjoub, M. R. (2010) Sediment yield variability in central Tunisia: a quantitative analysis of its controlling factors. Hydrol. Sci. J. 55(3), 446–458.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号