首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Flow regimes play an important role in sustaining biodiversity in river ecosystems. However, the effects of flow regimes on riverine fish have not been clearly described. Therefore, we propose a new methodology to quantitatively link habitat conditions (such as flow indices and physical habitat conditions) to the occurrence probability (OP) of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model in order to estimate the OP of fish, with particular attention to flow regime. A generalized linear model was used to evaluate the relationship between the probabilities of fish occurrence and major environmental factors in river sections. A geomorphology-based hydrological model was adopted to simulate river discharge, which was used to calculate 10 flow indices. The occurrence probabilities of 50 fish species in the Sagami River in Japan were modelled. For the prediction accuracy, field survey results that included at least five observations of both the presence and the absence of each species were required to obtain relatively reliable prediction (accuracy > 60%). Using the developed model, important habitat conditions for each species were identified, which showed the importance of low-flow events for more than 10 species, including Hypomesus nipponensis and Rhinogobius fluviatilis. The model also confirmed the positive effects of natural flow and the negative effect of river-crossing structures, such as dams and weirs, on the OP of most species. The suggested approach enables us to evaluate and project the ecological consequences of water resource management policy. The results demonstrate the applicability of the fish distribution model to provide quantitative information on the flow required to maintain fish communities.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Sui, P., Iwasaki, A., Saavedra, V.O.C., and Yoshimura, C., 2013. Modelling basin-scale distribution of fish occurrence probability for assessment of flow and habitat conditions in rivers. Hydrological Sciences Journal, 59 (3–4), 618–628.  相似文献   

3.
ABSTRACT

This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed  相似文献   

4.
Abstract

The importance of flow regime variability for maintaining ecological functioning and integrity of river ecosystems has been firmly established in both natural and anthropogenically modified systems. River flow regimes across lowland catchments in eastern England are examined using 47 variables, including those derived using the Indicators of Hydrologic Alteration (IHA) software. A principal component analysis method was used to identify redundant hydrological variables and those that best characterized the hydrological series (1986–2005). A small number of variables (<6) characterized up to 95% of the statistical variability in the flow series. The hydrological processes and conditions that the variables represent were found to be significant in structuring the in-stream macroinvertebrate community Lotic-invertebrate Index for Flow Evaluation (LIFE) scores at both the family and species levels. However, hydrological variables only account for a relatively small proportion of the total ecological variability (typically <10%). The research indicates that a range of other factors, including channel morphology and anthropogenic modification of in-stream habitats, structure riverine macroinvertebrate communities in addition to hydrology. These factors need to be considered in future environmental flow studies to enable the characterization of baseline/reference conditions for management and restoration purposes.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Worrall, T.P., Dunbar, M.J., Extence, C.A., Laizé, C.L.R., Monk, W.A., and Wood, P.J., 2014. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59 (3–4), 645–658.  相似文献   

5.
Abstract

One of the main challenges faced by hydrologists and water engineers is the estimation of variables needed for water resources planning and management in ungauged river basins. To this end, techniques for transposing information, such as hydrological regional analyses, are widely employed. A method is presented for regionalizing flow-duration curves (FDCs) in perennial, intermittent and ephemeral rivers, based on the extended Burr XII probability distribution. This distribution shows great flexibility to fit data, with accurate reproduction of flow extremes. The performance analysis showed that, in general, the regional models are able to synthesize FDCs in ungauged basins, with a few possible drawbacks in the application of the method to intermittent and ephemeral rivers. In addition to the regional models, we summarize the experience of using synthetic FDCs for the indirect calibration of the Rio Grande rainfall–runoff model parameters in ungauged basins.

Editor D. Koutsoyiannis

Citation Costa, V., Fernandes, W., and Naghettini, M., 2013. Regional models of flow-duration curves of perennial and intermittent streams and their use for calibrating the parameters of a rainfall–runoff model. Hydrological Sciences Journal, 59 (2), 262–277.  相似文献   

6.
Abstract

A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June–September), with a peak during July–August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse raingauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Suprit, K., Shankar, D., Venugopal, V. and Bhatkar, N.V., 2012. Simulating the daily discharge of the Mandovi River, west coast of India. Hydrological Sciences Journal, 57 (4), 686–704.  相似文献   

7.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

8.
ABSTRACT

This work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis  相似文献   

9.
Abstract

Ecological flow needs (EFN) frameworks incorporate a range of ecologically-relevant hydrological variables based on prior knowledge of river regime characteristics. However, when applied in cold regions, these approaches have largely ignored the influence of winter ice cover and the spring freshet on hydrological regimes: key components of river systems in cold regions with important direct effects on water quality, aquatic habitat and ecology. Here, we combine a review of the published literature on cold-regions hydrology and hydro-ecology with available hydrometric information for sites across Canada, a major cold-region country, to explore phenomena unique to these systems. We identify several ecologically-relevant hydrological measures (i.e. annual ice on/off dates, ice-cover duration, spring freshet initiation, peak water level during river ice break-up), pairing these with established metrics for incorporation into an enhanced suite of indicators specifically designed for cold regions. This paper presents the Cold-regions Hydrological Indicators of Change (CHIC), which can provide the basis for the assessment of EFN and climate change assessments in cold-region river ecosystems.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Peters, D.L., Monk, W.A., and Baird, D.J., 2014. Cold-regions Hydrological Indicators of Change (CHIC) for ecological flow needs assessment. Hydrological Sciences Journal, 59 (3–4), 502–516.  相似文献   

10.
Abstract

River water temperature regimes are expected to change along with climate over the next decades. This work focuses on three important salmon rivers of eastern Canada, two of which warm up most summers to temperatures higher than the Atlantic salmon lethal limit (>28°C). Water temperature was monitored at 53 sites on the three basins during 2–18 summers, with about half of these sites either known or potential thermal refugia for salmon. Site-specific statistical models predicting water temperature, based on 10 different climate scenarios, were developed in order to assess how many of these sites will remain cool enough to serve as refugia in the future (2046–2065). The results indicate that, while 19 of the 23 identified refugia will persist, important increases in the occurrence and duration of temperature events in excess of 24°C and 28°C, respectively, in the mainstems of the rivers, will lead to higher demands for thermal refugia in the salmonid populations.
Editor Z.W. Kundzewicz; Associate editor T. Okruszko  相似文献   

11.
ABSTRACT

In snow-dominated basins, collection of snow data while capturing its spatio-temporal variability is difficult; therefore, integrating assimilation products could be a viable alternative for improving streamflow simulation. This study evaluates the accuracy of daily snow water equivalent (SWE) provided by the SNOw Data Assimilation System (SNODAS) of the National Weather Service at a 1-km2 resolution for two basins in eastern Canada, where SWE is a critical variable intensifying spring runoff. A geostatistical interpolation method was used to distribute snow observations. SNODAS SWE products were bias-corrected by matching their cumulative distribution function to that of the interpolated snow. The corrected SWE was then used in hydrological modelling for streamflow simulation. The results indicate that the bias-correction method significantly improved the accuracy of the SNODAS products. Moreover, the corrected SWE improved the simulation performance of the peak values. Although the uncertainty of SNODAS estimates is high for eastern Canadian basins, they are still of great value for regions with few snow stations.  相似文献   

12.
Abstract

Development of environmental flow standards at the regional scale has been proposed as a means to manage the influence of hydrological alterations on riverine ecosystems in view of the rapid pace of global water resources management. Flow regime classification forms a critical part in such environmental flow assessments. We present a national-scale classification of hydrological regimes for Iran based on a set of hydrological metrics. It describes ecologically relevant characteristics of the natural hydrological regime derived from 15- to 47-year-long records of daily mean discharge data for 539 streamgauges within a 47-year period. The classification was undertaken using a fuzzy partitional method within Bayesian mixture modelling. The analysis resulted in 12 classes of distinctive flow regime types that differ in various hydrological aspects. This classification is being used for further research in regional-scale environmental flow studies in Iran.
Editor D. Koutsoyiannis  相似文献   

13.
Abstract

The paper analyses delineation of hydrological regional classes in the light of regional taxonomy. A brief review of terminological and methodological aspects of regional taxonomy is outlined. The analysis of identification of hydrological regional classes from the point of view of the definition of the basic spatial unit, formulation of the regional taxonomic problem and evaluation of the hydrological response of the physical regional classes is then followed. A more detailed delineation of physical regional classes and a marked separation concerning their hydrological response are achieved if the basic spatial unit is defined as a small basin. Formulation of a hydrological regionalization or regional typification by means of problems defined in regional taxonomy can remove ambiguous and inconsistent features in identifying regional classes. The physical regional classes formed for the purpose of regional flood frequency analysis are considered as regional also from the hydrological point of view only if they satisfy both conditions of intra-class similarity and of inter-class dissimilarity regarding the hydrological attributes.  相似文献   

14.
Abstract

The runoff regime of glacierized headwater catchments in the Alps is essentially characterized by snow and ice melt. High Alpine drainage basins influence distant downstream catchments of the Rhine River basin. In particular, during the summer months, low-flow conditions are probable with strongly reduced snow and ice melt under climate change conditions. This study attempts to quantify present and future contributions from snow and ice melt to summer runoff at different spatial scales. For the small Silvretta catchment (103 km2) in the Swiss Alps, with a glacierization of 7%, the HBV model and the glacio-hydrological model GERM are applied for calculating future runoff based on different regional climate scenarios. We evaluate the importance of snow and ice melt in the runoff regime. Comparison of the models indicates that the HBV model strongly overestimates the future contribution of glacier melt to runoff, as glaciers are considered as static components. Furthermore, we provide estimates of the current meltwater contribution of glaciers for several catchments downstream on the River Rhine during the month of August. Snow and ice melt processes have a significant direct impact on summer runoff, not only for high mountain catchments, but also for large transboundary basins. A future shift in the hydrological regime and the disappearance of glaciers might favour low-flow conditions during summer along the Rhine.

Citation Junghans, N., Cullmann, J. & Huss, M. (2011) Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine. Hydrol. Sci. J. 56(6), 981–993.  相似文献   

15.
Abstract

If management of water resources is to fully take into account the requirements of the environment, it will benefit from quantitative predictions of the ecological effects of river flow alterations. A significant relationship between flow reductions caused by groundwater abstraction and ecological conditions (as measured by relevant biotic indices) has been shown in streams in the midlands of England. In this article, we combine this relationship with hydrological indices derived from calibrated regional groundwater models to assess river reaches that are likely to be ecologically impacted by abstraction and might consequently be at risk of failing to meet EC Water Framework Directive standards. We demonstrate the application of this method within the framework of the Ecological Limits of Hydrologic Alteration (ELOHA) approach to making water resource decisions. We provide examples of how this approach can be used to assess the implications of different groundwater abstraction scenarios for river water bodies.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Streetly, M.J., Bradley, D.C., Streetly, H.R., Young, C., Cadman D., and Banham, A., 2014. Bringing groundwater models to LIFE: a new way to assess water resource management options. Hydrological Sciences Journal, 59 (3–4), 578–593.  相似文献   

16.
ABSTRACT

In cold region environments, any alteration in the hydro-climatic regime can have profound impacts on river ice processes. This paper studies the implications of hydro-climatic trends on river ice processes, particularly on the freeze-up and ice-cover breakup along the Athabasca River in Fort McMurray in western Canada, which is an area very prone to ice-jam flooding. Using a stochastic approach in a one-dimensional hydrodynamic river ice model, a relationship between overbank flow and breakup discharge is established. Furthermore, the likelihood of ice-jam flooding in the future (2041–2070 period) is assessed by forcing a hydrological model with meteorological inputs from the Canadian regional climate model driven by two atmospheric–ocean general circulation climate models. Our results show that the probability of ice-jam flooding for the town of Fort McMurray in the future will be lower, but extreme ice-jam flood events are still probable.  相似文献   

17.
ABSTRACT

The high variability in the hydrological regime of the Eastern Hydrological Region (EHR) of Northeast Brazil often results in floods and droughts, leading to serious socio-economic issues. Therefore, this work aimed to investigate connections between spatiotemporal hydrological variability of the EHR and large-scale climate phenomena. Multivariate statistical techniques were applied to relate climate indices with hydrological variables within two representative river basins in the EHR. The results indicated a multi-annual relationship between the state of the sea surface temperature of the Atlantic and Pacific oceans and anomalous hydrological variability in the basins. In addition, the northern Tropical Atlantic conditions were shown to play an important role in modulating the long-term variability of the hydrological response of the basins, whilst only extreme ENSO anomalies seemed to affect the rainy season. This knowledge is an important step towards long-term prediction of hydrological conditions and contributes to the improvement of water resources planning and management in the EHR.  相似文献   

18.
ABSTRACT

Any human intervention or action in karst terrains can unexpectedly, suddenly, strongly and, generally, dangerously change a local and/or a regional hydrological regime. A characteristic example of the Dinaric karst is given in this paper. The operation of two reservoirs in Livanjsko Polje at an altitude of about 702 m above sea level (m a.s.l.) and hydro-electric development of the Cetina River system started in 1973. This year marked a drastic and instantaneous change in the regional hydrological regime. A significant drop in the minimum, mean and maximum annual discharges of two neighbouring karst springs, Rumin Mali and Rumin Veliki, was caused by this anthropogenic construction. The exits of the two analysed karst springs, Rumin Mali and Veliki, are located at altitudes of about 326.8 m a.s.l. and 307.6 m a.s.l. respectively. The areal distance between them is 640 m. Their hydrological regimes have been altered in different ways. The drop in discharges is stronger for the Rumin Veliki than for the Rumin Mali. The analysis shows that the system development influenced the redistribution of the regional karst aquifer and, in this manner, contributed to the reduction of both karst springs’ recharge areas.
Editor D. Koutsoyiannis Associate editor E. Rozos  相似文献   

19.
Abstract

Effective environmental flow management depends on identification of ecologically-relevant flow attributes to maintain or restore flows in the context of other natural and human influences on stream ecosystems. This study in subtropical eastern Australia identified associations of fish with climatic and flow gradients, catchment topography, reach geology, habitat structure and land use across 20 catchments. Land-use patterns and associated stressors accounted for very little variation in fish assemblage structure. Of the 35 fish species analysed, 24 were strongly associated with gradients in mean daily flows and their variability, baseflow, number of zero-flow days and high-flow pulses, magnitude of the 1-year annual return interval flood and the constancy and predictability of monthly flows. The finding that 22 species (benthic and pelagic) were associated with gradients of antecedent low-flow hydrology indicates that these species (or functional trait groups) should be the focus of further analysis to explore hydro-ecological relationships in systems with regulated flow regimes.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

20.
Abstract

A major goal in hydrological modelling is to identify and quantify different sources of uncertainty in the modelling process. This paper analyses the structural uncertainty in a streamflow modelling system by investigating a set of models with increasing model structure complexity. The models are applied to two basins: Kielstau in Germany and XitaoXi in China. The results show that the model structure is an important factor affecting model performance. For the Kielstau basin, influences from drainage and wetland are critical for the local runoff generation, while for the XitaoXi basin accurate distributions of precipitation and evapotranspiration are two of the determining factors for the success of the river flow simulations. The derived model uncertainty bounds exhibit appropriate coverage of observations. Both case studies indicate that simulation uncertainty for the low-flow period contributes more to the overall uncertainty than that for the peak-flow period, although the main hydrological features in these two basins differ greatly.

Citation Zhang, X. Y., Hörmann, G., Gao, J. F. & Fohrer, N. (2011) Structural uncertainty assessment in a discharge simulation model. Hydrol. Sci. J. 56(5), 854–869.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号