首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

Streamflow variability in the Upper and Lower Litani basin, Lebanon was modelled as there is a lack of long-term measured runoff data. To simulate runoff and streamflow, daily rainfall was derived using a stochastic rainfall generation model and monthly rainfall data. Two distinct synthetic rainfall models were developed based on a two-part probabilistic distribution approach. The rainfall occurrence was described by a Markov chain process, while the rainfall distribution on wet days was represented by two different distributions (i.e. gamma and mixed exponential distributions). Both distributions yielded similar results. The rainfall data were then processed using water balance and routing models to generate daily and monthly streamflow. Compared with measured data, the model results were generally reasonable (mean errors ranging from 0.1 to 0.8?m3/s at select locations). Finally, the simulated monthly streamflow data were used to investigate discharge trends in the Litani basin during the 20th century using the Mann-Kendall and Sen slope nonparametric trend detection methods. A significant drying trend of the basin was detected, reaching a streamflow reduction of 0.8 and 0.7 m3/s per decade in January for the Upper and Lower basin, respectively.

Editor D. Koutsoyiannis; Associate editor Sheng Yue

Citation Ramadan, H.H., Beighley, R.E., and Ramamurthy, A.S., 2012. Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 57 (8), 1516–1529.  相似文献   

2.
In this study, monthly and annual Upper Blue Nile Basin rainfall data were analyzed to learn the rainfall statistics and its temporal and spatial distribution. Frequency analysis and spatial characterization of rainfall in the Upper Blue Nile Basin are presented. Frequency analysis was performed on monthly basin rainfall. Monthly basin average rainfall data were computed from a network of 32 gauges with varying lengths of records. Monthly rainfall probability distribution varies from month to month fitting Gamma‐2, Normal, Weibull and Log‐Normal distributions. The January, July, October and November basin rainfall fit the Gamma‐2 probability distribution. The February, June and December ones fit Weibull distribution. The March, April, May and August rainfall fit Normal distribution. The September rainfall fits Log‐Normal distribution. Upper Blue Nile Basin is relatively wet with a mean annual rainfall of 1423 mm (1960–2002) with a standard deviation of 125 mm. The annual rainfall has a Normal probability distribution. The 100‐year‐drought basin annual rainfall is 1132 mm and the 100‐year‐wet basin annual rainfall is 1745 mm. The dry season is from November through April. The wet season runs from June through September with 74% of the annual rainfall. October and May are transition months. Monthly and annual rainfalls for return periods 2‐, 5‐, 10‐, 25‐, 50‐ and 100‐year dry and wet patterns are presented. Spatial distribution of annual rainfall over the basin is mapped and shows high variation with the southern tip receiving as high as 2049 mm and the northeastern tip as low as 794 mm annual average rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4.
ABSTRACT

This study assesses the performance of Fourier series in representing seasonal variations of the tropical rainfall process in Malaysia. Fourier series are incorporated into a spatial-temporal stochastic model in an attempt to make the model parsimonious and, at the same time, capture the annual variation of rainfall distribution. In view of Malaysia’s main rainfall regime, the model is individually fitted for two regions with distinctive rainfall profiles: one being an urban area receiving rainfall from convective activities whilst the other receives rainfall from monsoonal activities. Since both regions are susceptible to floods, the study focuses on the rainfall process at fine resolution. Fourier series equations are developed to represent the model’s parameters to describe their annual periodicity. The number of significant harmonics for each parameter is determined by inspecting the cumulative fraction of total variance explained by the significant harmonics. Results reveal that the number of significant harmonics assigned for the parameters is slightly higher in the region with monsoonal rains. The overall simulation results show that the proposed model is capable of generating tropical rainfall series from convective and monsoonal activities.
Editor D. Koutsoyiannis Associate editor K. Hamed  相似文献   

5.
Abstract

A lot of different distribution functions have been proposed to represent the precipitation totals collected in k days, and in particular a transformed incomplete gamma distribution aimed to be the basis of the searched law (Formula 3.).

This distribution contains as particular cases, or as limit-cases the distributions usually employed for the daily, weekly, monthly and annual precipitations.

Periods even shorter than a day, as well as the intensity may be presented by the same law.

The general validity of the proposed law is confirmed by applying it at the rainfall data coliected at the Observatory of Ghent.  相似文献   

6.
A daily rainfall occurrence process   总被引:1,自引:0,他引:1  
A model for the periodic (annual cycle), discrete rainfall occurrence process is presented. Using this model the probabilistic properties of the process in -day intervals can be investigated. In such an interval the rainfall occurrence process is approximated by some stationary processa t ,tIN. The processa t ,tIN is described by the distributions of the lengths of wet and dry sequences. It is assumed that the lengths of successive wet and dry sequences are independent. For this process the distribution of the number of wet days in -day intervals is calculated. The model is fitted to 50-year rainfall data from Wroclaw, Poland. Rainfall amounts of 0.1, 1.0 and 2.0 mm are considered as thresholds defining a wet day. To estimate the distribution of the length of wet and dry sequences the family of Pascal distribution is chosen.  相似文献   

7.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Flood distributions can have unimodal or multimodal densities due to different flood generation mechanisms such as snowmelt and rainfall in the annual flood series. When applying nonparametric frequency analysis to annual flood data from the province of New Brunswick in Canada, unimodal, bimodal and heavy-tailed distribution shapes were found. By grouping basins with similarly-shaped densities on a geographical basis, homogeneous regions were delineated. Regional equations derived for a homogeneous region gave lower integral square errors than those of province-wide equations.  相似文献   

9.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

10.
This study examined trends and change points in 100-year annual and seasonal rainfall over hot and cold arid regions of India. Using k-means clustering, 32 stations were classified into two clusters: the coefficient of variation for annual and seasonal rainfall was relatively high for Cluster-II compared to Cluster-I. Short-term and long-term persistence was more dominant in Cluster-II (entirely arid) and Cluster-I (partly arid), respectively. Trend tests revealed prominent increasing trends in annual and wet season rainfall of Cluster-II. Dry season rainfall increased by 1.09 mm year?1 in the cold arid region. The significant change points in annual and wet season rainfall mostly occurred in the period 1941–1955 (hot and cold), and in the dry season in the period 1973–1975 (hot arid) and in 1949 (cold arid). The findings are useful for managing a surplus or deficiency of rainwater in the Indian arid region.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Kanae  相似文献   

11.
ABSTRACT

The GR4H lumped hourly rainfall–runoff model was assessed for its integration in a ridge-to-reef modelling framework. Particular attention was paid to rainfall representation, robustness of parameter estimates and ability to reproduce the main runoff features. The study was conducted in four tropical mountainous watersheds in New Caledonia, which are exposed to intense rainfall events, large annual climatic variations triggered by El Niño oscillation, and wildfires. The inverse distance and elevation weighting algorithm outperformed other classical rainfall interpolation methods under data-limited conditions. The time span of data needed for robust calibration was site specific and varied from 6–7 years to 10 years, which may be linked to El Niño events and to wildfires. With sufficient data, simulation quality was equivalent during the calibration and validation periods. The GR4H model was generally able to simulate both flash floods and large annual variations. The model was more reliable when simulating wet years and watersheds not subject to land-cover changes.  相似文献   

12.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

13.
14.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   

16.
Abstract

Southern Ontario, Canada, has been impacted in recent years by many heavy rainfall and flooding events that have exceeded existing historical estimates of infrastructure design rainfall intensity–duration–frequency (IDF) values. These recent events and the limited number of short-duration recording raingauges have prompted the need to research the climatology of heavy rainfall events within the study area, review the existing design IDF methodologies, and evaluate alternative approaches to traditional point-based heavy rainfall IDF curves, such as regional IDF design values. The use of additional data and the regional frequency analysis methodology were explored for the study area, with the objective of validating identified clusters or homogeneous regions of extreme rainfall amounts through Ward's method. As the results illustrate, nine homogeneous regions were identified in Southern Ontario using the annual maximum series (AMS) for daily and 24-h rainfall data from climate and rate-of-rainfall or tipping bucket raingauge (TBRG) stations, respectively. In most cases, the generalized extreme value and logistic distributions were identified as the statistical distributions that provide the best fit for the 24-h and sub-daily rainfall data in the study area. A connection was observed between extreme rainfall variability, temporal scale of heavy rainfall events and location of each homogeneous region. Moreover, the analysis indicated that scaling factors cannot be used reliably to estimate sub-daily and sub-hourly values from 24- and 1-h data in Southern Ontario.

Citation Paixao, E., Auld, H., Mirza, M.M.Q., Klaassen, J. & Shephard, M.W. (2011) Regionalization of heavy rainfall to improve climatic design values for infrastructure: case study in Southern Ontario, Canada. Hydrol. Sci. J. 56(7), 1067–1089.  相似文献   

17.
18.
Abstract

A stochastic weather generator has been developed to simulate long daily sequences of areal rainfall and station temperature for the Belgian and French sub-basins of the River Meuse. The weather generator is based on the principle of nearest-neighbour resampling. In this method rainfall and temperature data are sampled simultaneously from multiple historical records with replacement such that the temporal and spatial correlations are well preserved. Particular emphasis is given to the use of a small number of long station records in the resampling algorithm. The distribution of the 10-day winter maxima of basin-average rainfall is quite well reproduced. The generated sequences were used as input for hydrological simulations with the semi-distributed HBV rainfall–runoff model. Though this model is capable of reproducing the flood peaks of December 1993 and January 1995, it tends to underestimate the less extreme daily peak discharges. This underestimation does not show up in the 10-day average discharges. The hydrological simulations with the generated daily rainfall and temperature data reproduce the distribution of the winter maxima of the 10-day average discharges well. Resampling based on long station records leads to lower rainfall and discharge extremes than resampling from the data over a shorter period for which areal rainfall was available.  相似文献   

19.
20.
Abstract

The relative importance of data on winter snow accumulation and summer (monsoon) rainfall for estimating annual runoff in the Jhelum River basin, Punjab Himalaya, Pakistan, has been investigated. Strong correlations were found between point measurements of the annual maximum of snowpack water equivalent and of total winter precipitation in the Kunhar sub-basin, and total annual discharge. In addition, total winter snowfall showed a generally significant correlation with annual discharge. Elevation did not appear to play a strong role in determining the usefulness of these measurements, whereas location within the basin relative to large scale precipitation patterns did, in some cases. Monsoon rainfall appeared to be a very poor indicator of annual discharge. The results also suggest that the operation of a continental scale negative feedback mechanism between Eurasian snow cover and the Indian monsoon might be felt in this region of the Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号