首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal stratification is crucial for water quality and ecological processes in deep lakes and reservoirs and can be substantially affected by meteorological and hydrological processes in the catchment. However, how thermal stratification responds to rainfalls of different intensities and changing hydrological processes has not been documented very well. Here, high frequency water column profiles at three stations in a large subtropical deep reservoir (Lake Qiandaohu, China) in 2017 were used to elucidate the impacts of rainfall on lake physical process and chemical environment. The impact of rainfalls on the thermal stratification and dissolved oxygen in riverine zone was more impressive than that in transitional and lacustrine zones. The effect on thermal stratification by rainfall was largely affected by the magnitude of rainfall. Moderate and heavy rainfall events could reduce the thermal stability of water column, deepen the mixing layer depth, and shape the thermocline, resulting from decrease of surface water temperature and increased inflows. While rainstorms could totally break up thermoclines in the riverine zone by high volume inflow flushing. In addition, we found that the hypoxia and anoxia initial depths increased during rainfall events in this reservoir, which were well related to the changes of mixing layer depths. This research highlights that quantifying the effects of rainfalls on thermal stratification and dissolved oxygen will be beneficial for optimizing reservoir management.  相似文献   

2.
西南峡谷型水库的季节性分层与水质的突发性恶化   总被引:40,自引:3,他引:37  
选择西南云贵高原乌江流域的百花湖水库进行了气象、水温度和水化学(DO、FeⅡ和MnⅡ)的连续监测(13个月).结果表明,由于气候等原因,百花湖水库的水体在夏季形成分层,但是没有典型分层湖泊的温跃层变化,这种水体温度结构可以在4-10月保持稳定;这种"不显著的"温度分层结构,有效限制了上下水团的混合,形成显著的水体溶解氧分层,氧化/还原界面可达到水深8m左右.20世纪90年代初以来,贵州多座水库频繁出现的季节性水质恶化现象,与水库水体混合期(多为夏末初秋),水体分层结构失稳有关.上下层水体的垂直交替,使下层水体中的还原性物质带入上层湖水,造成表层水体缺氧和表观浑浊,鱼类窒息死亡.在百花湖水库的研究表明,西南地区深水水库,可以在夏季出现一定的水体温度分层结构,并导致显著的水体水化学(如溶解氧)分层,进而影响水库水环境质量.  相似文献   

3.
湖库热分层消亡引起的突发性水质恶化现象引起了广泛的关注,我国南方水库大多是暖单次混合型湖泊,每年混合一次,导致水库水质周期性下降,但目前对南方水库热分层消亡过程的高频监测研究较少。为探究我国南方水库热分层消亡期水体混合过程的时空变化规律及驱动因素,以广西南宁天雹水库为例,于冬季热分层消亡期(2019年11月—2020年2月)对水库多点位水体理化指标开展原位监测,并利用自建气象站获取气象水文数据。结果表明:(1)水库热分层消亡期间,过渡区水深较浅可在短期内达到完全混合状态且缺氧区同步消失;而湖泊区混合过程整体滞后于过渡区,混合层深度由6.85 m增加至13.65 m,缺氧区逐渐减小,缺氧指数(AI)由0.40减小至0.07,直至水体完全混合后缺氧区消失;水库过渡区较湖泊区提前约40 d达到完全混合状态。(2)气象因子是引起热分层结构变化的主要因素,气温(T)、辐射(R)与混合层深度(MLD)呈现显著负相关(RT=0.927、RR=0.925,P<0.01),风速(WS)与MLD呈现显著正相关(RWS=0.728,P&...  相似文献   

4.
水库或湖泊的热分层结构是其动力与环境过程的重要研究方面,虽然很多学者针对水体分层结构和演变机理开展了大量研究,但水体通过水-气界面与大气进行热交换的过程,各气象因子的贡献机理等研究成果还很缺乏。本文基于三峡水库香溪河库湾2019年3月-2020年2月期间的水温、水位及气象等监测数据,针对水-气界面热交换过程如何影响水温垂向结构及表层水体湍流混合作用开展研究。结果表明,(1)香溪河水体年内呈高温期分层、低温期混合的基本特征,高温期混合层深度小于8 m,低温期混合层深度超过30 m。(2)太阳短波辐射是香溪河水体的主要热源,潜热通量和长波辐射是香溪河水体的主要冷源,感热通量贡献极小。(3)香溪河平均风速较弱,约为1.6 m/s,主要通过增强潜热和感热通量的方式影响水体垂向稳定性结构特征,其机械扰动作用较弱。(4)表层水体湍能通量在高温期较低(10-7m3/s3量级),此时水体处于分层状态,风应力大概率主导表层水体湍流发育;低温期表层水体湍能通量较高(10-6 m3/s3<...  相似文献   

5.
Several field studies in bays and estuaries have revealed pronounced subsurface maxima in the vertical profiles of the current amplitude of the principal tidal harmonic, or of its vertical shear, over the water column. To gain fundamental understanding about these phenomena, a semi-analytical model is designed and analysed, with focus on the sensitivity of the vertical structure of the tidal current amplitude to formulations of the vertical shape of the eddy viscosity. The new analytical solutions for the tidal current amplitude are used to explore their dependence on the degree of surface mixing, the vertical shape of eddy viscosity in the upper part of the water column and the density stratification. Sources of surface mixing are wind and whitecapping. Results show three types of current amplitude profiles of tidal harmonics, characterised by monotonically decreasing shear towards the surface, “surface jumps” (vertical shear of tidal current amplitude has a subsurface maximum) and “subsurface jets” (maximum tidal current amplitude below the surface), respectively. The “surface jumps” and “subsurface jets” both occur for low turbulence near the surface, whilst additionally the surface jumps only occur if the eddy viscosity in the upper part of the water column decreases faster than linearly to the surface. Furthermore, “surface jumps” take place for low density stratification, while and “subsurface jets” occur for high density stratification. The physics causing the presence of surface jumps and subsurface jets is also discussed.  相似文献   

6.
湖泊热力结构不仅影响湖泊内部生态环境,而且与区域气象和气候系统相互影响,但目前对湖泊垂直温度的观测研究仍非常匮乏.本研究基于青藏高原拉昂错连续的湖温和气象观测,分析了小时尺度和日尺度热力分层规律和混合层深度的变化特征.结果表明:拉昂错为冷多次完全混合型湖泊;湖表温度8月达到最大值,湖面敞水区和沿岸的湖表温度季节震荡相同,但存在一定的空间差异;与空气温度相比,湖表温度变幅小,降温更慢,峰值滞后约1个月.同时发现,拉昂错混合层深度变化较为规律,辐射和风速是影响湖泊混合层深度的主要外界因子.探明真实的高原湖泊分层规律,有利于提高湖泊模拟能力,为优化湖泊参数化方案提供参考.  相似文献   

7.
The Rio de la Plata is a large-scale estuary located at 35°S on the Atlantic coast of South America. This system is one of the most important estuarine environments in the continent, being a highly productive area that sustains valuable artisanal and coastal fisheries in Uruguay and Argentina. The main goals of this paper are to summarize recent knowledge on this estuary, integrating physical, chemical and biological studies, and to explore the sources and ecological meaning of estuarine variability associated to the stratification/mixing alternateness in the estuary. We summarized unpublished data and information from several bibliographic sources. From study cases representing different stratification conditions, we draw a holistic view of physical patterns and ecological processes of the stratification/mixing alternateness. This estuary is characterized by strong vertical salinity stratification most of the time (the salt-wedge condition). The head of the estuary is characterized by a well-developed turbidity front. High turbidity constrains their photosynthesis. Immediately offshore the turbidity front, water becomes less turbid and phytoplankton peaks. As a consequence, trophic web in the estuary could be based on two sources of organic matter: phytoplankton and plant detritus. Dense plankton aggregations occur below the halocline and at the tip of the salt wedge. The mysid Neomysis americana, a key prey for juvenile fishes, occurs all along the turbidity front. A similar spatial pattern is shown by one of the most abundant benthic species, the clam Mactra isabelleana. These species could be taken advantage of the particulate organic matter and/or phytoplankton concentrated near the front. Nekton is represented by a rich fish community, with several fishes breeding inside the estuary. The most important species in terms of biomass is Micropogonias furnieri, the main target for the coastal fisheries of Argentina and Uruguay. Two processes have been identified as producing partially stratified conditions: persistent moderate winds (synoptic scale), or low freshwater runoff (interannual scale). Less frequently, total mixing of the salt wedge occurs after several hours of strong winds. The co-dominance of diatoms (which proliferate in highly turbulent environments) and red tides dinoflagellates and other bloom taxa (better adapted to stratified conditions), would indicate great variability in the turbulence strength, probably manifested as pulses. Microplankton and ichthyoplankton assemblages defined for the stratified condition are still recognized during the partially mixed condition, but in this case they occupy the entire water column: vertical structure of the plankton featuring the stratified condition become lost. Bottom fish assemblages, on the contrary, shows persistence under the different stratification conditions, though the dominant species of the groups show some variations. Summarizing, the Río de la Plata Estuary is a highly variable environment, strongly stratified most of the time but that can be mixed in some few hours by strong wind events that occur in an unpredictable manner, generating stratification/partially mixed (less frequently totally mixed) pulses all along the year. At larger temporal scales, the system is under the effects of river discharge variations associated to the ENSO cycle, but their ecological consequences are not fully studied.  相似文献   

8.
水库作为温室气体的重要来源,对区域气候变化有不可忽略的影响。然而,目前对水库溶存温室气体的空间异质性及垂向特征的认知仍然欠缺。为了揭示水库分层期和混合期溶存温室气体空间特征及排放通量,也为厘清水库温室气体产生和排放的关键过程提供重要支撑。研究选择东北地区大型水库——汤河水库为对象,于2021年7—9月和10月(分别代表水库分层期和混合期)对水库不同位置(坝前、库中和库尾)开展溶存温室气体垂向分层监测。研究结果显示,水库CH4排放通量变化范围为0.018~0.174 mmol/(m2·d),是大气CH4的源,空间分布为库尾>库中>坝前;CO2通量为-4.91~58.77 mmol/(m2·d),除分层期东支库尾,其余点位均表现为大气CO2的源,空间分布为坝前>库中>库尾。时间上,分层期CH4排放通量(0.071±0.044 mmol/(m2·d))高于混合期((0.027±0.008) mm...  相似文献   

9.
ABSTRACT

Water temperature dynamics in a reservoir are affected by its bathymetry, climatic conditions and hydrological processes. Miyun Reservoir in China is a large and deep reservoir that experienced a large water level decline in 1999–2004 due to low rainfall and relatively high water supply to Beijing. To study changes of stratification characteristics in Miyun Reservoir from 1998 to 2011, the one-dimensional year-round lake model MINLAKE2010 was modified by adding a new selective withdraw module and a reservoir hydrological model. Simulation results under three scenarios demonstrated that the new MINLAKE2012 model accurately predicted daily water levels and temperature dynamics during the water level fluctuation period. The water level decline led to 7.6 and 3.8°C increases in the maximum and mean bottom temperatures and about 29 days reduction in the stratification days. These simulation results provide an insight into the thermal evolution of Miyun Reservoir during the planned future water filling process.
Editor D. Koutsoyiannis Associate editor M. Acreman  相似文献   

10.
The response of the density-driven circulation in the Chesapeake Bay to wind forcing was studied with numerical experiments. A model of the bay with realistic bathymetry was first applied to produce the density-driven flow under average river discharge and tidal forcing. Subsequently, four spatially uniform wind fields (northeasterly, northwesterly, southwesterly, and southeasterly) were imposed to examine the resulting cross-estuary structure of salinity and flow fields. In general, northeasterly and northwesterly winds intensified the density-driven circulation in the upper and middle reaches of the bay, whereas southeasterly and southwesterly winds weakened it. The response was different in the lower bay, where downwind flow from the upper and middle reaches of the bay competed with onshore/offshore coastal flows. Wind remote effects were dominant, over local effects, on volume transports through the bay entrance. However, local effects were more influential in establishing the sea-level slopes that drove subtidal flows and salinity fields in most of the bay. The effect of vertical stratification on wind-induced flows was also investigated by switching it off. The absence of stratification allowed development of Ekman layers that reached depths of the same order as the water depth. Consequently, bathymetric effects became influential on the homogeneous flow structure causing the wind-induced flow inside the bay to show a marked transverse structure: downwind over the shallow areas and upwind in the channels. In the presence of stratification, Ekman layers became shallower and the wind-induced currents showed weaker transverse structure than those that developed in the absence of stratification. In essence, the wind-driven flows were horizontally sheared under weak stratification and vertically sheared under stratified conditions.  相似文献   

11.
热分层对水库水质的季节性影响——以西安黑河水库为例   总被引:3,自引:1,他引:2  
卢金锁  李志龙 《湖泊科学》2014,26(5):698-706
深水水库作为城市的重要供水水源,通常由于热量在垂向水体上的不均匀分配形成热分层.热分层会阻碍垂向上水体交换引发水质分层现象,在冬季水库发生“翻库”之后,水体混合导致水库的整体水质下降.结合热分层指数可以客观、直接地表达水库热分层的稳定程度.综合水库的气温、水体更新率和水质参数(溶解氧、pH、总磷、氨氮)的年度变化,对陕西黑河水库2008-2010年的热分层状况进行研究.研究表明:水库的热分层形成会直接恶化底部水质尤其会加速底部水体中溶解氧的消耗;热分层的年度变化主要受气温控制,但在特定时期较大的水体更新率可以在一定程度上弱化水体热分层,减缓底部水质恶化.该结果可使水库管理者在水库分层最稳定、水质恶化最严重时期以人工调节水体更新率的方式弱化热分层,为保证水质安全提供参考.  相似文献   

12.
Recent climate change represents one of the most serious anthropogenic threats to lake ecosystems in Canada. As meteorological and hydrological conditions are altered by climate change, so too are physical, chemical and biological properties of lakes. The ability to quantify the impact of climate change on the physical properties of lakes represents an integral step in estimating future chemical and biological change. To that end, we have used the dynamic reservoir simulation model, a one‐dimensional vertical heat transfer and mixing model, to hindcast and compare lake temperature‐depth profiles against 30 years of long‐term monitoring data in Harp Lake, Ontario. These temperature profiles were used to calculate annual (June–September) thermal stability values from 1979 to 2009. Comparisons between measured and modelled lake water temperature and thermal stability over three decades showed strong correlation (r2 > 0.9). However, despite significant increases in modelled thermal stability over the 30 year record, we found no significant change in the timing of the onset, breakdown or the duration of thermal stratification. Our data suggest that increased air temperature and decreased wind are the primary drivers of enhanced stability in Harp Lake since 1979. The high‐predictive ability of the Harp Lake dynamic reservoir simulation model suggests that its use as a tool in future lake management projects is appropriate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We present the results of multiparametric observations designed to follow the phytoplankton dynamics and interrelated physical, chemical and biological processes in the Gulf of Finland (Baltic Sea). Data were acquired by an autonomous moored water column profiler, an acoustic Doppler current profiler, a flow-through system installed aboard a ferry and by profiling and discrete water sampling aboard research vessels in July and August 2009. The main aim of the study was to investigate the processes responsible for the formation and maintenance of sub-surface maxima of phytoplankton biomass. We suggest that the environmental conditions caused by the prevailing atmospheric and oceanographic forcing (wind; vertical stratification; basin-wide, mesoscale and sub-mesoscale processes) are preferred by certain species/taxonomic groups and explain the migration patterns of phytoplankton. Nocturnal downward migration of phytoplankton with a swimming speed up to 1.6 m h−1 occurred when the community was dominated by the dinoflagellate Heterocapsa triquetra. The observed splitting of the population into two vertically separated biomass maxima suggests that the H. triquetra cells, which reached the sub-surface layers with high nutrient concentrations, experienced bi-diurnal or asynchronous (when swimming upwards) vertical migration. The most intense sub-surface biomass maxima, on some occasions with the biomass much higher than that in the surface layer, were detected in connection to the sub-mesoscale intrusions below the depth of the strongest vertical density gradient.  相似文献   

14.
Abstract

A unified analysis is given of the critical conditions for the onset of stratification due to either a vertical or a horizontal buoyancy flux, with tidal or wind stirring.

The critical conditions for the onset of stratification with a horizontal buoyancy flux are found to be of the form of ratios of the tidal slope, or wind setup, to the equivalent surface slope due to the lateral density gradient. These ratios, which are easily determined from sea data, indicate that the profiles of critical flux Richardson Number, averaged over the stirring cycle, are similar to those inferred from the laboratory experiments of Hopfinger and Linden (1982) in which there is zero mean shear turbulence with a stabilising buoyancy flux, and also that the efficiency for the conversion of kinetic energy to potential energy for tidal stirring is similar to that for wind stirring.

The observed much greater efficiency for wind stirring, compared with tidal stirring with a vertical buoyancy flux, is also consistent with the existence of flux Richardson Number profiles in the sea similar to those occurring in the corresponding laboratory experiments. Using the solution of the turbulent kinetic energy equation for the water column, the relative importance of the production of turbulent kinetic energy, and its diffusion by turbulence are assessed, and the critical conditions for the onset of stratification with a vertical buoyancy flux are shown to reduce the classical Simpson—Hunter form.  相似文献   

15.
Abstract

The objectives of this study were to discover the relationship between variables in a water reservoir and the hydrochemical variations related to acid mine drainage (AMD), and to describe the horizontal stratification related to vertical salinity and variations in metals present in the region. The information obtained may be used for establishing risk evaluation criteria and to design future remediation strategies, which could be useful for new dams. The hydrochemical characterization was based on a sampling campaign performed in October 2011. A total of 28 samples, at 1-m-deep intervals, were obtained. The hydrogeochemical study of the polluted reservoir shows that the dilution effect is not sufficient to neutralize AMD contributions from mining activity. Sampling carried out from the surface water to the deepest points reveals stratification of the reservoir that allows it to be included in the group of monomictic and holomitic lakes.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

16.
The Ebro river basin, in the northeastern part of the Iberian Peninsula in Europe, very often experiences radiation fog episodes in winter that can last for several days. The impact on human activities is high, especially on road and air transportation. The installation in July 2009 of a WindRASS in the area, which is able to work in the presence of fog, now allows inspecting the vertical structure of the temperature and wind profiles across the roughly 300-m-thick fog layer. We present a case study of a long-lasting (60 h) deep radiation fog that took place in December 2009 to obtain a deeper understanding of the dynamic processes governing such persistent fog. Field observations of vertical profiles of temperature, wind and turbulent kinetic energy are compared with a high-resolution mesoscale simulation, satellite imagery of fog distribution and observations taken in the area to understand why the fog is so persistent and how it dissipates only for a short period in the afternoon despite intermittent turbulence within the fog deck. The confinement of the fog inside a practically closed basin allows us to study the relevant physical processes in the establishment and subsequent evolution of the fog episode using a limited-area mesoscale model. The contribution of the WindRASS measurements allowed us to validate the numerical simulations, particularly inspecting the role of turbulence that can link the bottom and top of the fog through moderate episodic mixing. The fog layer has very weak winds inside, but is well mixed and experiences intermittent top-bottom turbulence generated in its upper part by convection due to radiative cooling and by wind shear due to the topographically generated flows that blow just above the top of the fog.  相似文献   

17.
In Lake Baldegg, Switzerland (surface area 5.3 km2, maximum depth 66 m) the analysis of data from moored instrument systems (atmospheric boundary layer, lake temperature distribution, bottom currents) was correlated to the long-term development of vertical mixing as seen from profiles of natural isotopes (radon-222, tritium and helium-3) and chemical species. The investigation shows: 1. Vertical mixing coefficients below 25 m are small. Consequently the vertical concentration distribution of sediment emanating species in the deep hypolimnion is controlled by the bottom topography. 2. Renewal of deep hypolimnic water is significant even during stratification. 3. Weakly damped internal waves characterize the internal dynamics during stratification. 4. Horizontal bottom currents play an important role in the hypolimnion mixing and can be correlated to internal waves during stratification.  相似文献   

18.
Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a global ocean dataset of calculated wind- and tide-induced vertical turbulent mixing coefficients. We then examined energy conservation of ocean vertical mixing from the point of view of ocean wind energy inputs, gravitational potential energy change due to mixing (with and without artificially limiting themixing coefficient), and K-theory vertical turbulent parameterization schemes regardless of energy inputs. Our research showed that calculating the mixing coefficient with average data and artificial limiting the mixing coefficient can cause a remarkable lack of energy conservation, with energy losses of up to 90% and changes in the energy oscillation period. The data also show that wind can introduce a huge amount of energy into the upper layers of the Southern Ocean, and that tidesdo so in regions around underwater mountains. We argue that it is necessary to take wind and tidal energy inputs into account forlong-term ocean climate numerical simulations. We believe that using this ocean vertical turbulent mixing coefficient climatic dataset is a fast and efficient method to maintain the ocean energy balance in ocean modeling research.  相似文献   

19.
Seventeen physical and chemical parameters were obtained from a hydroelectric reservoir located in a tropical region in the south of Brazil. Multivariate Principal Component Analysis (PCA) and Hierarchical Group Analysis (HGA) were used to identify the parameters discriminating the origin of water from the Tibagi and the Primeiro de Maio River, after it has passed the mixing region. The study was conducted during the dry and rainy seasons in July 2002 and February 2003 at three depths and three sampling sites located 0, 5, and 10 km away from the mixing region. The statistical methods showed to be appropriate for identifying the contribution of each tributary in the water mixing site of a complex water system. The most important discriminating parameter was the absorbance relation A(253 nm)/A(203 nm), followed by the concentrations of Fe(III), Mn(III), and Ni(II). An anthropogenic interference was found in the reservoir due to high Ni(II) and orthophosphate concentrations caused by a nearby town sewage discharge. The interference was more important during the dry periods due to the lower dispersion of the pollutants. Urgent initiatives should be taken from the state government to build treatment stations for the wastewater of the small cities around the Capivara hydroelectric reservoir to prevent the drinking water quality from deteriorating.  相似文献   

20.
In this study, a three‐dimensional (3D) non‐hydrostatic circulation model was applied to study the thermal structure, its evolution and water circulation of Yachiyo Lake in Hiroshima, Japan. The simulations were conducted for 1 month during July 2006. The meteorological forcing variables such as wind stress, surface atmospheric pressure and heat flux transfer through the lake surface were provided by an atmospheric mesoscale model run. The vertical mixing process of the lake was calculated using the Mellor‐Yamada turbulence model. The 1‐month numerical simulation revealed the wind‐induced currents of the lake, two gyres in the mid‐layer, and depth‐averaged monthly mean currents. Further numerical experiments studying the mechanism of the two gyres in the lake showed the important role of topography in gyre formation. The thermal structure of the lake and its evolution both in space and in time as predicted by the model showed very good agreement with the observed values and characteristics of Yachiyo Lake. The internal gravity waves, which are crucial for mixing in the stratified lake, are depicted by the vertical fluctuation of isotherms. Using the non‐dimensional gradient Richardson number, Yachiyo Lake was determined to be stable under strong stratification during the study period, and therefore very sensitive to wind stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号