首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
ABSTRACT

This study aimed to evaluate the potential of the recently introduced Prophet model for estimating reference evapotranspiration (ETo). A comparative study was conducted for benchmarking the model results with support vector regression (SVR) and temperature-based empirical models (Thornthwaite and Hargreaves) in southern Japan. The performance of the Prophet, SVR and temperature-based empirical models was evaluated by Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2). The results indicate that temperature-based Prophet and SVR models have greater accuracy than the empirical models. The Prophet model with sole input of relative humidity, sunshine hours or windspeed showed acceptable accuracy (NSE > 0.80; R2 > 0.80), while SVR models with similar inputs showed greater errors. Accuracy improved with increasing number of input parameters, giving excellent performance (NSE > 0.95; R2 > 0.95) with all input parameters. Hence, the Prophet model is a new promising approach for modelling ETo with limited input variables.  相似文献   

2.
ABSTRACT

Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and random forest (RF) models were used to determine cumulative infiltration and infiltration rate in arid areas in Iran. The input data were sand, clay, silt, density of soil and soil moisture, while the output data were cumulative infiltration and infiltration rate, the latter measured using a double-ring infiltrometer at 16 locations. The results show that SVM with radial basis kernel function better estimated cumulative infiltration (RMSE = 0.2791 cm) compared to the other models. Also, SVM with M4 radial basis kernel function better estimated the infiltration rate (RMSE = 0.0633 cm/h) than the ANFIS and RF models. Thus, SVM was found to be the most suitable model for modelling infiltration in the study area.  相似文献   

3.
Abstract

Irrigation practice has increased considerably recently and will continue to increase to feed a growing population and provide better life standards worldwide. Numerous studies deal with the hydrological impacts of irrigation, but little is known about the temporal evolution of the affected variables. This work assesses the effects on a gully after irrigation was implemented in its hydrological basin (7.38 km2). Flow, electrical conductivity, nitrate concentration and exported loads of salts and nitrates were recorded in Lerma gully (Zaragoza, Spain) for eight hydrological years (2004–2011), covering the periods before, during and after implementation of irrigation. Non-parametric statistical analysis was applied to understand relationships and trends. The results showed the correlation of irrigation with flow and the load of salts and nitrates exported, although no significant relationship with precipitation was detected. The implementation of irrigation introduced annual trends in flow (3.2 L s-1, +23%), salinity (–0.38 mS cm-1, –9%), and nitrate concentration (5.4 mg L-1, +8%) in the gully. In addition, the annual loads of contaminants exported increased (salts and nitrates, 27.3 Mg km-2 year-1, +19%, and 263 kg NO3-N km-2 year-1, +27%, respectively). The trends presented a strong seasonal pattern, with higher and more significant trends for the irrigation season. The changes observed were different from those of larger irrigation districts or regional basins, due to the differences in land use and irrigation management. It is important to understand these changes in order to achieve an adequate management of the environment and water resources.

Editor Z.W. Kundzewicz

Citation Merchán, D., Causapé, J., and Abrahão, R., 2013. Impact of irrigation implementation on hydrology and water quality in a small agricultural basin in Spain. Hydrological Sciences Journal, 58 (7), 1400–1413.  相似文献   

4.
Eddy correlation measurements within the Nile Delta allowed the determination of evapotranspiration (E) for seven crops (rice, maize, cotton, sugar beet, berseem, wheat and fava beans) using basin irrigation (BI), furrow irrigation (FI), BI with increased intervals (BIi), FI with increased intervals (FIi), strip irrigation (SI) and drip irrigation (DI). Total E values over the cropping season for rice (BI, BIi) were the highest (>600 mm), while those for sugar beet (DI), maize (SI and DI) and berseem (BIi) were the lowest (<250 mm). The differences were due to a combination of atmospheric demand, soil moisture, the presence of surface standing water, root depth, and the length and timing of the cropping season. The DI and SI methods had the advantage for water saving, while the FIi and BIi methods were effective for crops with shallow root lengths. Estimated annual E was 566–828 mm/year (water-saving irrigation) and 875–1225 mm/year (conventional irrigation).  相似文献   

5.
Abstract

This paper analyses the temporal dynamics of soil water balance components in a representative recharge area of the Sierra de Gádor (Almeria, southeastern Spain) in two hydrological years. Two approaches are used to estimate daily potential recharge (PR): Approach 1 based on deriving PR from the water balance as the difference between measurements of rainfall (P) and actual evapotranspiration (E) obtained by eddy covariance; and Approach 2 with PR obtained from the dynamic pattern of the soil moisture (θ) recorded at two depths in the site's thin soil (average 0.35 m thickess). For the hydrological year 2003/04, which was slightly drier than the 30-year average, E accounted for 64% of rainfall and occurred mainly in late spring and early summer. The PR estimated by Approach 1 was 181 ± 18 mm year-1 (36% of rainfall), suggesting an effective groundwater recharge in the study area. In the unusually dry hydrological year 2004/05, E was about 215 mm year-1, close to the annual rainfall input, and allowing very little (8 ± 12 mm year-1) PR according to Approach 1. Estimation of PR based on Approach 2 resulted in PR rates lower than those found by Approach 1, because Approach 2 does not take into account the recharge that occurs through preferential flow pathways (cracks, joints and fissures) which were not monitored with the θ probes. Moreover, using Approach 2, the PR estimates differed widely depending on the time scale considered: with daily mean θ data, PR estimation was lower, especially in late spring, while θ data at 30 min resolution yielded a more reliable prediction of the fraction of total PR resulting from the downward movement of soil water by gravity.

Citation Cantón, Y., Villagarcía, L., Moro, M. J., Serrano-Ortíz, P., Were, A., Alcalá, F. J., Kowalski, A. S., Solé-Benet, A., Lázaro, R. & Domingo, F. (2010) Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrol. Sci. J. 55(5), 737–753.  相似文献   

6.
ABSTRACT

The accurate representation of the Earth’s surface plays a vital role in soil erosion modelling. Topography is parameterized in the Universal Soil Loss Equation (USLE) and Revised USLE (RUSLE) by the topographic (LS) factor. For slope gradients of < 20%, soil loss values are similar for both models, but when the gradient is increased, RUSLE estimates are only half of those of USLE. The study aims to assess the validity of this statement for complex hillslope profiles. To that end, both models were applied at eight diverse mountainous sub-watersheds. The USLE and RUSLE indices were estimated utilizing the SEAGIS model and a European dataset, respectively. LS factors were in a 3:1 ratio (i.e. USLE:RUSLE) considering the entire basin area. For areas with slopes <20%, gross erosion estimates of both models converged. Sites of strong relief (>20%) USLE yielded significantly higher values than RUSLE.  相似文献   

7.
Animal treading can change soil physical properties, and thus is an important factor in hydrological modelling. We investigated the impacts of animal treading on infiltration by using a series of rainfall simulation experiments at Whatawhata Research Center, Waikato, New Zealand. The study identified significant variables for estimating soil steady‐state infiltration at a micro‐site (0·5 m2) and fitted the Green and Ampt equation by modifying or including variables for soil and water parameters and animal activities on grazing paddocks. A regression function for estimating steady‐state infiltration rate was created for each of four scenarios: between tracks (inter‐track), track, easy slope with ash soil, and easy slope with clay soil. Significant variables included the number of days after treading, antecedent soil moisture, field capacity, percentage of bare ground, bulk density, and the high degree of soil damage (damage not compacted). Regression models explained more than 71% of the variance in steady‐state infiltration for three scenarios, but only 53% for the easy slope with clay soil. The remodified Green and Ampt equation provided satisfactory estimation of infiltration for all scenarios (accuracy > 80%), and thus enables us to use the modified model for Waikato hill country pastures of different topography, soil physical condition, season and grazing management. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

This study presents an adaptation of the double-ring infiltrometer (DRI) device, which allows several infiltration experiments to be conducted at the same location. Hence, it becomes possible to use the DRI method to investigate infiltration behaviour under different initial soil moisture conditions. The main feature is the splitting of the inner ring into two parts. While the lower part remains in the soil throughout the investigation period, the upper part is attached to the lower one just before the infiltration experiment. This method was applied to eight test sites in an Alpine catchment, covering different land-use/cover types. The results demonstrated the applicability of the adapted system and showed correlations between total water infiltration and initial soil moisture conditions on pastures, independent of the underlying soil type. In contrast, no correlation was found at forest sites or wetlands. Thus, the study emphasizes the importance of paying special attention to the impact of initial soil moisture conditions on the infiltration—and consequently the runoff behaviour—at managed areas. Given the differences in the total infiltrated water of between 30 and 1306 mm, consideration of the interplay between initial soil moisture conditions, land-use/cover type, and soil properties in rainfall–runoff models is a prerequisite to predict runoff production accurately.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

9.
Biological soil crust (BSC), as a groundcover, is widely intergrown with grass. The effects of grass combined with BSCs on slope hydrology and soil erosion during rainfall are still unclear. In this study, simulated rainfall experiments were applied to a soil flume with four different slope cover treatments, namely, bare soil (CK), grass cover (GC), BSC, and GC + BSC, to observe the processes of runoff and sediment yield. Additionally, the soil moisture at different depths during infiltration was observed. The results showed that the runoff generated by rainfall for all treatments was in the following order: BSC > GC + BSC > CK > GC. Compared with CK, GC promoted infiltration, and BSC inhibited infiltration. The BSCs obviously inhibited infiltration at a depth of 8 cm. When the rainfall continued to infiltrate down to 16 and 24 cm, the effects of grass on promoting infiltration were stronger than those of BSCs on inhibiting infiltration. Compared with CK, the flow velocity of the BSC, GC and GC + BSC treatments was reduced by 62.8%, 32.3% and 68.3%, respectively. The BSCs and grass increased the critical shear stress by increasing the resistance. Additionally, the average sediment yield of GC and both treatments with BSCs was reduced by 80.8% and >99%, respectively, compared with CK. The soil erosion process was dominated by the soil detachment capacity in the CK, BSC and GC + BSC treatments, while the GC treatment showed a transport-limited process. This study provides a scientific basis for the reasonable spatial allocation of vegetation in arid and semiarid areas and the correction of vegetation cover factors in soil erosion prediction models.  相似文献   

10.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

11.
Reclaimed water is efficiently used to recover the dry river, but river water and groundwater may be impacted considering the water quality. Thus, it is critical to study the factors controlling water chemistry. Samples of reclaimed water, river and groundwater were collected monthly from January to September in 2010, in Huai River (North China). And samples were analyzed for major 15 physio-chemical parameters. Using hierarchical cluster analysis, 9 months are divided into two distinct groups, which show the clear temporal variation. In reclaimed water and river water, one group includes February, while the other includes other months. In shallow and deep groundwater, one group includes months from January to April, while the other encompasses others. Monitoring stations are classified into three groups. Group A with high value of ions and nitrogen (order: NH4-N > NO3-N > NO2-N) includes reclaimed water and river water. Group B with moderate concentration and nitrogen (order: NO3-N > NH4-N > NO2-N) includes all shallow groundwater and one deep groundwater. Group C with the low value and nitrogen (order: NO3-N > NO2-N > NH4-N), includes two deep groundwater. Using multivariate analysis and ionic relationships, river water chemistry is found to be controlled by reclaimed water and evaporation process; chemistry in shallow groundwater and one deep groundwater, with type of Na–Ca(Mg)–HCO3–Cl, is controlled by dissolution of calcite, carbonate weathering. Additionally, reactions of nitrification, denitrification and cation exchange occur in the infiltration of reclaimed water; chemistry in the other deep groundwater, with type of Ca–Mg–HCO3–Cl, is controlled by dissolution of calcite, carbonate weathering and denitrification.  相似文献   

12.
ABSTRACT

The effects of topsoil addition of rice-husk dust (RHD) and cattle dung (CD), alongside surface mulching with dry grasses/legume, on the infiltration characteristics and intrinsic structural properties of a deep, well-drained soil in southeastern Nigeria are assessed. Treatments are RHD-amended, CD-amended and “unamended”, each plot being either surface-mulched or left bare, with the unamended-bare plots as control. Amendments and mulch were applied at 20 t/ha equivalents. Their effects on the soil’s infiltration characteristics 7 months later were not evident; however, there was a tendency for differences: CD-amended ≥ RHD-amended ≥ unamended and surface-mulched ≥ bare-surface. By contrast, saturated hydraulic conductivity (Ks ) differed thus: CD-mulched ≥ unamended-mulched > the rest. Similar values were recorded for Ks (50.89 cm/h) and final infiltration rate (50.74 cm/h) only under CD-amended plots, which also showed the highest values (43.50 cm/h) for transmissivity of the soil. Soil penetrometer resistance was lowest in CD-amended plots (113.44 kPa) and highest in unamended plots (166.78 kPa). Topsoil addition of cattle dung and surface mulching could increase infiltration, though marginally, and permeability of coarse-textured tropical soils beyond the season of their application when their effects on soil structure have almost waned.  相似文献   

13.
We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman–Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34·7% and 39·6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman–Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0·80), proving the reliability of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

A modelling study was undertaken to quantify effects that the climate likely to prevail in the 2050s might have on water quality in two contrasting UK rivers. In so doing, it pinpointed the extent to which time series of climate model output, for some variables derived following bias correction, are fit for purpose when used as a basis for projecting future water quality. Working at daily time step, the method involved linking regional climate model (HadRM3-PPE) projections, Future Flows Hydrology (rainfall–runoff modelling) and the QUESTOR river network water quality model. In the River Thames, the number of days when temperature, dissolved oxygen, biochemical oxygen demand and phytoplankton exceeded undesirable values (>25°C, <6 mg L?1, >4 mg L?1 and >0.03 mg L?1, respectively) was estimated to increase by 4.1–26.7 days per year. The changes do not reflect impacts of any possible change in land use or land management. In the River Ure, smaller increases in occurrence of undesirable water quality are likely to occur in the future (by 1.0–11.5 days per year) and some scenarios suggested no change. Results from 11 scenarios of the hydroclimatic inputs revealed considerable uncertainty around the levels of change, which prompted analysis of the sensitivity of the QUESTOR model to simulations of current climate and hydrology. Hydrological model errors were deemed of less significance than those associated with the derivation and downscaling of driving climatic variables (rainfall, air temperature and solar radiation). Errors associated with incomplete understanding of river water quality interactions with the aquatic ecosystem were found likely to be more substantial than those associated with hydrology, but less than those related to climate model inputs. These errors are largely a manifestation of uncertainty concerning the extent to which phytoplankton biomass is controlled by invertebrate grazers, particularly in mid-summer; and the degree to which this varies from year to year. The quality of data from climate models for generating flows and defining driving variables at the extremes of their distributions has been highlighted as the major source of uncertainty in water quality model outputs.
EDITOR A. Castellarin; ASSOCIATE EDITOR X. Fang  相似文献   

15.
Abstract

Field-scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local-scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field-scale water balances because they have larger footprint areas than local soil moisture measurements. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5-m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D to estimate groundwater recharge. Variation in measured D was attributed to redirection of snowmelt infiltration and differences in lysimeter hydraulic properties caused by surface soil treatment. During the growing seasons of 2010, 2011 and 2012, ETwbLys (278, 289 and 269 mm, respectively) was in good agreement with ETEC (298, 301 and 335 mm). Annual recharge estimated from modelled D was 486, 624 and 613 mm for three calendar years 2010, 2011 and 2012, respectively. In summary, lysimeter D and ETEC can be integrated to estimate and model groundwater recharge.
Editor D. Koutsoyiannis  相似文献   

16.
Abstract

Estimating groundwater recharge is essential to ensure the sustainable use of groundwater resources, particularly in arid and semi-arid regions. Soil water balances have been frequently advocated as valuable tools to estimate groundwater recharge. This article compares the performance of three soil water balance models (Hydrobal, Visual Balan v2.0 and Thornthwaite) in the Ventós-Castellar aquifer, Spain. The models were used to simulate wet and dry years. Recharge estimates were transformed into water table fluctuations by means of a lumped groundwater model. These, in turn, were calibrated against piezometric data. Overall, the Hydrobal model shows the best fit between observed and calculated levels (r2 = 0.84), highlighting the role of soil moisture and vegetation in recharge processes.

Editor D. Koutsoyiannis; Associate editor X. Chen

Citation Touhami, I., et al., 2014. Comparative performance of soil water balance models in computing semi-arid aquifer recharge. Hydrological Sciences Journal, 59 (1), 193–203.  相似文献   

17.
Abstract

Remote sensing has become promising in providing temporal and spatial information on biogeodynamics in large and open freshwater bodies. In optically complex environments, such as in the Western Basin of Lake Erie (WBLE), the water contains multiple biogeochemical constituents or colour producing agents (CPAs), such as phytoplankton, suspended matter and dissolved organic carbon; identifying and analysing such in-water constituents is crucial for understanding and assessing many biogeochemical processes. For example, concentrations of chlorophyll-a and total suspended matter can be used as proxies to assess phytoplankton dynamics and particulate loading. However, quantitative estimation of their concentrations from satellite observations is complicated when working with mixed spectral signatures. Hyperspectral remote sensing is fast emerging as a key technology for advanced and improved understanding of optically complex waters. This study estimates concentrations of chlorophyll-a and total suspended matter (TSM) in the WBLE by applying the partial least squares (PLS) method to a full range (400–900 nm) of continuous narrow spectral bands. The PLS method models the covariance between hyperspectral bands and CPAs, and identifies the optimal bands that characterize most of the variance in the CPAs. This method avoids the curse of dimensionality and the effects of multi-collinearity, a challenge that is associated with new-generation hyperspectral satellite sensors. Validation parameters for the PLS-based models produced R2 of 0.84 for chlorophyll-a (RMSE = 1.18 μg/L), and R2 of 0.90 for TSM (RMSE = 1.26 mg/L), illustrating the potential of the PLS method for isolating and extracting absorption features characterizing the various CPAs in optically complex Case II type waters.
Editor Z.W. Kundzewicz Associate editor Not assigned  相似文献   

18.
ABSTRACT

Soil structure-dependent parameters can vary rapidly as a consequence of perturbing events such as intense rainfall. Investigating their short-term changes is therefore essential to understand the general behaviour of a porous medium. The aim of this study is to gain insight into the effects of wetting, perturbation and recovery processes through different sequences of Beerkan infiltration experiments performed on a sandy-loam soil. Two different three-run infiltration experiments (LHL and LLL) were carried out by pouring water at low (L, non-perturbing) and high (H, perturbing) heights above the soil surface and at short time intervals (hours, days). The results demonstrate that the proposed method allows one to capture short-term variations in soil structure-dependent parameters. The developed methodology is expected to simplify the parameterization of hydrological models with temporally variable soil hydraulic properties.  相似文献   

19.
ABSTRACT

A study of surface water chemistry evolution was conducted by multivariate statistical analysis and inverse geochemical modelling using the PHREEQC computer program. Using hierarchical cluster analysis the 14 sampling sites were classified into three groups (recharge, transition and discharge areas). Water chemistry changed along a flow path so that waters with Ca–HCO3 and Mg–Cl composition changed to Mg–Cl–HCO3 waters. The order of abundance of the major cations was Mg > Ca > Na > K. Their average concentrations were 21, 19, 3.6 and 2.5 mg L-1, respectively. Inverse geochemical modelling along flow paths indicated that the dissolution of sylvite and kaolinite, and precipitation of feldspars and andalusite, happened with Na entering the solution and Ca, Mg and K leaving the solution.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

20.
Health risk associated with the exposure to the polluted atmospheric air inhalation was estimated for the residents of Kraków, Poland. The air pollution concentration data were obtained from the air-quality monitoring system of the city in 2007–2016. The carcinogenic risk of the studied subpopulations was not acceptable under the formula of C6H6 > BaP > As(PM10) > Cd(PM10) > Pb(PM10) > Ni(PM10). The total carcinogenic risk (Rt) amounted to 3.04E?04 for children, 2.22E?04 for infants, 1.45E?04 for women, and 1.22E?04 for men. The same risk was calculated for the top three locations of the monitoring stations in this respect, within the city of Kraków: Kurdwanów Housing Estate, Nowa Huta district, and Krasińskiego Av. Non-carcinogenic risk in the case of all six monitoring stations and in respect of all the studied subpopulations, resulting from the exposure to PM10 and for NO2 for all stations in case of children and infants, as well as, for adults at Krasińskiego Av. and Dietla Str. stations was rated medium. For C6H6 in the case of adults, children, and infants the risk was rated low. The total risk (HI) of non-carcinogenic pollution was rated medium and ranged as follows: 6.53 for children, 4.70 for infants, 3.19 for women, and 2.67 for men. That type of risk was decreasing at the station locations as follows: Krasińskiego Av. > Dietla Str. > Nowa Huta district > Kurdwanów Housing Estate > Z?oty Róg Str. > Piastów Housing Estate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号