首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of an alluvial channel for critical conditions requires information about four basic parameters, i.e., particle size d, water depth y, energy slope Sf and average velocity u. Most of the investigators use a standard or modified form of the critical Shields’ parameter to define the incipient motion of a particular grain size. Shields’ diagram describes an iterative process of determining the incipient motion parameters. To design a process that does not require iteration, one must know the resistance relationship. The absence of a universal resistance equation increases the difficulty of defining the model. Metamodelling techniques are widely used in engineering designs to simulate a complex system. This article describes a Metamodel, which employs the radial basis function (RBF) network to predict the average velocity u and energy slope Sf based on experimental data of incipient condition. With the help of the Metamodel generated by the RBF network, design curves have been presented to predict the u and Sf based on known values of the particle size and water depth. It has been found that this model improves the predictability of incipient motion.  相似文献   

2.
Abstract

The depth-averaged hydraulic equations augmented with a suitable bed-load sediment transport function form a closed system which governs the one-dimensional flow in an alluvial river or channel. In this paper, it is shown that this system is hyperbolic and yields three families of shock-wave solutions. These are determined to be temporally stable in restricted regions of the (H, F 0)-plane, via the Lax shock inequalities. Further, it is demonstrated that this criterion is equivalent to the energy dissipation criterion developed by Needham and Hey (1991).  相似文献   

3.
Abstract

Dissolved oxygen (DO) is one of the most useful indices of river's health and the stream re-aeration coefficient is an important input to computations related to DO. Normally, this coefficient is expressed as a function of several variables, such as mean stream velocity, shear stress velocity, bed slope, flow depth, and Froude number. However, in free surface flows, some of these variables are interrelated, and it is possible to obtain simplified stream re-aeration equations. In recent years, different functional forms have been advanced to represent the re-aeration coefficient for different data sets. In the present study, the artificial neural network (ANN) technique has been applied to estimate the re-aeration coefficient (K 2) using data sets measured at different reaches of the Kali River in India and values obtained from the literature. Observed stream/channel velocity, bed slope, flow depth, cross-sectional area and re-aeration coefficient data were used for the analysis. Different combinations of variables were tested to obtain the re-aeration coefficient using an ANN. The performance of the ANN was compared with other estimation methods. It was found that the re-aeration coefficient estimated by using an ANN was much closer to the observed values as compared with the other techniques.  相似文献   

4.
Abstract

Among various factors that have influence on the meandering of an alluvial channel, the most significant are valley slope, discharge, bed material, and time. The necessary condition for the origin and development of meandering of an alluvial channel is the erosion of bed material and deposition of the eroded material downstream. The criterion for the development of the meandering is that the discharge must be equal to or greater than the critical discharge (i.e., discharge corresponding to critical shear velocity). The initial channel section has an effect on the development of meandering. The meandering in the V-shaped channels starts from the center (deepest point) of the channel and works inside the banks (inside meandering) before it windens the banks, While the meandering in the rectangular channels starts with the widening of the banks (outside meandering). Maender width increases with the increase in the increase discharge and slope, and decreases with the increase in size of bed material. The meander development continues with time the meander reaches the final stage and equilibrium condition.  相似文献   

5.
Abstract

Abstract Accurate application of the longitudinal dispersion model requires that specially designed experimental studies are performed in the river reach under consideration. Such studies are usually very expensive, so in order to quantify the longitudinal dispersion coefficient, as an alternative approach, various researchers have proposed numerous empirical formulae based on hydraulic and morphometric characteristics. The results are presented of the application of artificial neural networks as a parameter estimation technique. Five different cases were considered with the network trained for different arrangements of input nodes, such as channel depth, channel width, cross-sectionally averaged water velocity, shear velocity and sinuosity index. In the case where the sinuosity index is included as an input node, the results turned out to be better than those presented by other authors.  相似文献   

6.
Abstract

The concept of “catchment-scale storm velocity” quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space–time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2 to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling.

Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Nikolopoulos, E.I., Borga, M., Zoccatelli, D., and Anagnostou, E.N., 2014. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59 (7), 1363–1376. http://dx.doi.org/10.1080/02626667.2014.923889  相似文献   

7.
A theoretical model is developed for predicting equilibrium alluvial channel form. The concept of greatest relative stability, achieved by maximizing resistance to ?ow in the ?uvial system, is presented as the basis for an optimization condition for alluvial systems. Discharge, sediment supply (quantity and calibre) and valley gradient are accepted as independent governing variates. The model is used to de?ne a dimensionless alluvial state space characterized by aspect ratio (W/d), relative roughness (D/d), and dimensionless shear stress (τ*) or, equivalently, channel slope (S). Each alluvial state exhibits unique values of Froude number and sediment concentration. The range of alluvial states for constant values of relative bank strength (parameterized by an apparent friction angle, ?′) forms a single plane in the state space (W/d, D/d, τ* or S). The scaling relations produced by the model are consistent with laboratory channels exhibiting a range of bank strengths, and with the behaviour of natural channels. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This study investigates the influence of ground water injection on the initial movement of non-cohesive sediment particles on a riverbank slope analytically and experimentally.By including the hydrauli...  相似文献   

10.
Abstract

The distribution of major geological units, static water level data, water chemistry data, and observations of surface features influenced by groundwater seepage were used to ascertain the nature of groundwater occurrence and flow pattern in the Enugu coal field, Nigeria. Considerations of the geological units, the static groundwater levels and groundwater seepages in the mines indicate that the coal sequence is a multiaquifer system in which sandstone and coal aquifers alternate with shale aquitards. Based on the hydraulic head data, the groundwater flow is predominantly downwards. Groundwater velocity calculation across the multiaquifer system using the Darcy equation gave a flow velocity of about 1 m day?1. For groundwater systems, such a calculated velocity is considered high. The high velocity is most probably due to the high fracture porosity as well as the presence of other stratigraphic and structural features such as alluvial fills that provide high hydraulic conductivity pathways across the aquifer system. The pattern of groundwater inflow into the mines is also influenced by these stratigraphie and structural features.  相似文献   

11.
Abstract

The low Rossby number flow in a rotating cylinder with an inclined bottom, of small slope, is examined when part of the lid of the container is rotating at a slightly different rate. The resulting flow is calculated numerically by solving the governing equations for the two-dimensional geostrophic motion which approximates the flow in most of the fluid including the inertially-modified E ¼ -layers. The presence of ageostrophic regions, on the container walls and beneath the velocity discontinuity on the lid, is accounted for in the governing equations and their boundary conditions. This study supplements previous work on this configuration, in which the zero Rossby number flow was calculated and experimental results were presented, by enabling a direct comparison to be made between the results of the low Rossby number theory and the experiments. The numerical results for a range of Rossby and Ekman numbers compare well with those from the experiments despite a severe limitation on the size of the Rossby number arising from the analysis in the ageostrophic part of the detached shear layer.  相似文献   

12.
The parallel physically-based surface–subsurface model PARFLOW was used to investigate the spatial patterns and temporal dynamics of river–aquifer exchange in a heterogeneous alluvial river–aquifer system with deep water table. Aquifer heterogeneity at two scales was incorporated into the model. The architecture of the alluvial hydrofacies was represented based on conditioned geostatistical indicator simulations. Subscale variability of hydraulic conductivities (K) within hydrofacies bodies was created with a parallel Gaussian simulation. The effects of subscale heterogeneity were investigated in a Monte Carlo framework. Dynamics and patterns of river–aquifer exchange were simulated for a 30-day flow event. Simulation results show the rapid formation of saturated connections between the river channel and the deep water table at preferential flow zones that are characterized by high conductivity hydrofacies. Where the river intersects low conductivity hydrofacies shallow perched saturated zones immediately below the river form, but seepage to the deep water table remains unsaturated and seepage rates are low. Preferential flow zones, although only taking up around 50% of the river channel, account for more than 98% of total seepage. Groundwater recharge is most efficiently realized through these zones. Subscale variability of Ksat slightly increased seepage volumes, but did not change the general seepage patterns (preferential flow zones versus perched zones). Overall it is concluded that typical alluvial heterogeneity (hydrofacies architecture) is an important control of river–aquifer exchange in rivers overlying deep water tables. Simulated patterns and dynamics are in line with field observations and results from previous modeling studies using simpler models. Alluvial heterogeneity results in distinct patterns and dynamics of river–aquifer exchange with implications for groundwater recharge and the management of riparian zones (e.g. river channel-floodplain connectivity via saturated zones).  相似文献   

13.
ABSTRACT

Water from the alluvium of ephemeral rivers in Zimbabwe is increasingly being used. These alluvial aquifers are recharged annually from infiltrating floodwater. Nonetheless, the size of this water resource is not without limit and an understanding of the hydrological processes of an alluvial aquifer is required for its sustainable management. This paper presents the development of a water balance model, which estimates the water level in an alluvial aquifer recharged by surface flow and rainfall, while allowing for abstraction, evaporation and other losses. The model is coupled with a watershed model, which generates inflows from upland catchment areas and tributaries. Climate, hydrological, land cover and geomorphological data were collected as inputs to both models as well as observed flow and water levels for model calibration and validation. The sand river model was found to be good at simulating the observed water level and was most sensitive to porosity and seepage.  相似文献   

14.
Abstract

The long wave equations governing the flow in alluvial rivers and channels are considered. The linearized equations are re-cast in the form of a single equation of wave hierarchy type as discussed by Whitham (1974). The dynamic and kinematic waves are of third and second order respectively. Behaviour at the wave fronts is considered and a roll-wave type instability is revealed.

For stable flow, the theory is used to make both qualitative and quantitative predictions in the areas of short and long term floods, tidal waves and channel dredging.

The non-uniformity in the quasi-steady theory on bedform development [see, for example, Reynolds (1985)] as the Froude number, F, approaches unity is also discussed, and appropriate scalings are obtained to derive a theory which remains valid when F ~ 1.  相似文献   

15.
Quantifying incipient sediment motion in vegetated open channel flow is pivotal for estimating bed load transport and the aquatic ecological environment in rivers.A new formula is developed to predict the critical flow velocity for incipient sediment motion in the presence of emergent vegetation,by incorporating the influence of vegetation drag that characterizes the effects of mean flow and turbulence on sediment movement.The proposed formula is shown to agree with existing experimental data.Mo...  相似文献   

16.
17.
1 INTRODUCTIONWhen water flows over a fluvial bed, hydro-dynandc force induced by the flow is acting on thesediment particles lying on the bed. A further increase in flow velocity results in an increase in themagnitude of this fOrce; and sediment particles begin to move if a situation is eventu8lly reached whenthe hydro-dynandc force exceeds a certain critical value. This initial movement of sediment pallicles istermed inciPient motion. The erosion and sedimentation of nuvial beds can be…  相似文献   

18.
Abstract

The behaviour of the shear velocity along a gravel-bed channel is investigated experimentally in the presence of a negative pressure gradient (accelerating flow). Different methods of estimation of the shear velocity, derived from vertical profiles of the mean longitudinal point velocity, are examined and a new method is proposed. Results show that the proposed method of estimation is comparable to the St Venant and Clauser's methods. At a specific cross section, for constant bottom slope and relative roughness, shear velocity increases with discharge.  相似文献   

19.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The energy based least action principle (LAP) has proven to be very successful for explaining natural phenomena in both classical and modern physics. This paper briefly reviews its historical development and details how, in three ways, it governs the behaviour and stability of alluvial rivers. First, the LAP embodies the special stationary equilibrium state of motion and so its incorporation with the principle of energy conservation explains why so many optimizing hypotheses have been proposed in fluvial geomorphology. Second, the variational approach underlying the LAP provides a more straightforward and simpler fuzzy‐object orientated method for solving river regime problems than do the various complex Newtonian formulations. Third, it is shown that in fluvial systems with surplus energy the surplus can be expended with slope and/or channel geometry adjustments, with the degree of channel geometry adjustment quantified by the dimensionless numbers F for depth dominated adjustment and H for width/depth dominated adjustment. Different planforms are preferred at different energy levels, with H providing a quantitative measure of the flow's efficiency for moving sediment. In rivers with insufficient energy, the interactions of endogenous and exogenous factors are shown to be capable, in certain circumstances, of achieving a stationary equilibrium condition which acts as the attractor state. Importantly, this study describes how iterative changes enable systems to achieve such a stable equilibrium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号