首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmium, Ru, Ir, Pt, Pd and Re abundances and 187Os/188Os data on peridotites were determined using improved analytical techniques in order to precisely constrain the highly siderophile element (HSE) composition of fertile lherzolites and to provide an updated estimate of HSE composition of the primitive upper mantle (PUM). The new data are used to better constrain the origin of the HSE excess in Earth’s mantle. Samples include lherzolite and harzburgite xenoliths from Archean and post-Archean continental lithosphere, peridotites from ultramafic massifs, ophiolites and other samples of oceanic mantle such as abyssal peridotites. Osmium, Ru and Ir abundances in the peridotite data set do not correlate with moderately incompatible melt extraction indicators such as Al2O3. Os/Ir is chondritic in most samples, while Ru/Ir, with few exceptions, is ca. 30% higher than in chondrites. Both ratios are constant over a wide range of Al2O3 contents, but show stronger scatter in depleted harzburgites. Platinum, Pd and Re abundances, their ratios with Ir, Os and Ru, and the 187Os/188Os ratio (a proxy for Re/Os) show positive correlations with Al2O3, indicating incompatible behavior of Pt, Pd and Re during mantle melting. The empirical sequence of peridotite-melt partition coefficients of Re, Pd and Pt as derived from peridotites () is consistent with previous data on natural samples. Some harzburgites and depleted lherzolites have been affected by secondary igneous processes such as silicate melt percolation, as indicated by U-shaped patterns of incompatible HSE, high 187Os/188Os, and scatter off the correlations defined by incompatible HSE and Al2O3. The bulk rock HSE content, chondritic Os/Ir, and chondritic to subchondritic Pt/Ir, Re/Os, Pt/Re and Re/Pd of many lherzolites of the present study are consistent with depletion by melting, and possibly solid state mixing processes in the convecting mantle, involving recycled oceanic lithosphere. Based on fertile lherzolite compositions, we infer that PUM is characterized by a mean Ir abundance of 3.5 ± 0.4 ng/g (or 0.0080 ± 0.0009*CI chondrites), chondritic ratios involving Os, Ir, Pt and Re (Os/IrPUM of 1.12 ± 0.09, Pt/IrPUM = 2.21 ± 0.21, Re/OsPUM = 0.090 ± 0.002) and suprachondritic ratios involving Ru and Pd (Ru/IrPUM = 2.03 ± 0.12, Pd/IrPUM = 2.06 ± 0.31, uncertainties 1σ). The combination of chondritic and modestly suprachondritic HSE ratios of PUM cannot be explained by any single planetary fractionation process. Comparison with HSE patterns of chondrites shows that no known chondrite group perfectly matches the PUM composition. Similar HSE patterns, however, were found in Apollo 17 impact melt rocks from the Serenitatis impact basin [Norman M.D., Bennett V.C., Ryder G., 2002. Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis. Earth Planet. Sci. Lett, 217-228.], which represent mixtures of chondritic material, and a component that may be either of meteoritic or indigenous origin. The similarities between the HSE composition of PUM and the bulk composition of lunar breccias establish a connection between the late accretion history of the lunar surface and the HSE composition of the Earth’s mantle. Although late accretion following core formation is still the most viable explanation for the HSE abundances in the Earth’s mantle, the “late veneer” hypothesis may require some modification in light of the unique PUM composition.  相似文献   

2.
Re-Os同位素体系是理解月球强亲铁元素的分布规律和示踪月球的后期增生历史的重要手段。目前人们对月球物质Re-Os同位素成分的了解还是十分有限的,已有的Re-Os同位素数据显示一些能代表月幔成分特征的月海玄武岩具有很低的Re和Os的浓度,以及类似于球粒陨石的187Os/188Os成分特征,而月球火山玻璃和月壤等表现出相对高的Re-Os丰度和相对富放射成因Re-Os同位素成分。一般认为月球月幔的Re、0s和其他强亲铁元素相对球粒陨石是非常亏损的,而地球地幔则具有相对较高的强亲铁元素丰度(0.008倍CI球粒陨石的丰度)。新的Re-Os同位素结果证明月幔确实是亏损的,但是月球和地球在太阳系演化的较晚时期都有外来的球粒陨石物质的大量加入,即后期增生(late accretion)过程,导致了月球和地球上部物质(如月球火山玻璃、月壤等)相对地富集Os同位素和强亲铁元素,这些外来物质的后期增生可能是长期和持续的,增生过程主要发生在3.9~4.4Ga。但目前仍不清楚后期增生的陨石物质是被逐渐加入的,还是在一个相对较短的时期大量加入的,因此尚需对更多的月球物质做进一步的Re-Os同位素和强亲铁元素成分的研究。  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(13-14):2105-2122
We present new bulk compositional data for 6 martian meteorites, including highly siderophile elements Ni, Re, Os, Ir and Au. These and literature data are utilized for comparison versus the siderophile systematics of igneous rocks from Earth, the Moon, and the HED asteroid. The siderophile composition of ALH84001 is clearly anomalous. Whether this reflects a more reducing environment on primordial Mars when this ancient rock first crystallized, or secondary alteration, is unclear. QUE94201 shows remarkable similarity with EET79001-B for siderophile as well as lithophile elements; both are extraordinarily depleted in the “noblest” siderophiles (Os and Ir), to roughly 0.00001 × CI chondrites. As in terrestrial igneous rocks, among martian rocks Ni, Os and Ir show strong correlations vs. MgO. In the case of MgO vs. Ni, the martian trend is displaced toward lower Ni by a large factor (5), but the Os and Ir trends are not significantly displaced from their terrestrial counterparts. For Mars, Re shows a rough correlation with MgO, indicating compatible behavior, in contrast to its mildly incompatible behavior on Earth. Among martian MgO-rich rocks, Au shows a weak anticorrelation vs. MgO, resembling the terrestrial distribution except for a displacement toward 2–3 times lower Au. The same elements (Ni, Re, Os, Ir and Au) show similar correlations with Cr substituted for MgO. Data for lunar and HED rocks generally show less clear-cut trends (relatively few MgO-rich samples are available). These trends are exploited to infer the compositions of the primitive Earth, Mars, Moon and HED mantles, by assuming that the trend intercepts the bulk MgO or Cr content of the primitive mantle at the approximate primitive mantle concentration of the siderophile element. Results for Earth show good agreement with earlier estimates. For Mars, the implied primitive mantle composition is remarkably similar to the Earth’s, except for 5 times lower Ni. The best constrained of the extremely siderophile elements, Os and Ir, are present in the martian mantle at 0.005 times CI, in comparison to 0.007 times CI in Earth’s mantle. This similarity constitutes a key constraint on the style of core-mantle differentiation in both Mars and Earth. Successful models should predict similarly high concentrations of noble siderophile elements in both the martian and terrestrial mantles (“high” compared to the lunar and HED mantles, and to models of simple partitioning at typical low-pressure magmatic temperatures), but only predict high Ni for the Earth’s mantle. Models that engender the noble siderophile excess in Earth’s mantle through a uniquely terrestrial process, such as a Moon-forming giant impact, have difficulty explaining the similarity of outcome (except for Ni) on Mars. The high Ni content of the terrestrial mantle is probably an effect traceable to Earth’s size. For the more highly siderophile elements like Os and Ir, the simplest model consistent with available constraints is the veneer hypothesis. Core-mantle differentiation was notably inefficient on the largest terrestrial planets, because during the final ∼ 1% of accretion these bodies acquired sufficient H2O to oxidize most of the later-accreting Fe-metal, thus eliminating the carrier phase for segregation of siderophile elements into the core.  相似文献   

4.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

5.
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites.  相似文献   

6.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

7.
The highly siderophile elements (HSE's: Ru, Rh, Pd, Re, Os, Ir, Pt and Au) and those elements with distribution coefficients between Fe-rich metal and silicate phases which exceed 104. The large magnitude of these distribution coefficients makes them exceedingly difficult to measure experimentally. We describe a new experimental campaign aimed at obtaining reliable values of DMmets/sil melt for selected HSE's indirectly, by measuring the solubilities of the pure metals (or simple HSE alloys) in haplobasaltic melts as a function of oxygen fugacity.

Preliminary results for Pd, Au, Ir and Re indicate that the HSE's may dissolve in silicate melts in unusually low valence states, e.g., 2+ for Ir and 1+ for the others. These unusual valence states may be important in understanding the geochemical properties of the HSE's. Inferred values of DMmet/sil melt from the solubility data at 1400°C and IW −1 are 107 for Pd and Au, and 109−1012 for Ir. Metal/silicate partition coefficients are thus confirmed to be very large, and are also different for the different HSE's.

A review of the abundance of the HSE's in the Earth's upper mantle shows that they are all present at 0.8% of chondritic, i.e. they have the same relative abundance, and the ratios of their concentrations are chondritic (e.g., Re/Os). Both the low degree of depletion (compared to the high values of DMmet/sil melt) and the chondritic relative abundances support the idea that the mantle's HSE's were added in a “late veneer” after the cessation of core formation. Sulfur is even more depleted in the mantle relative to CI chondrites than the HSE's: this implies a late veneer which was depleted in volatile elements, and which was added to a mantle stripped of S. Since considerable S dissolves in silicate melt, this further implies that core formation in the Earth either occurred under P−T conditions below the solicate solidus, or, if the process occurred over a range of temperatures in a cooling Earth, then the process continued down to conditions below the silicate solidus.

The chondritic relative abundances of the HSE's in the upper mantle argue for a chemically unstratified primitive mantle, unless the late veneer was mixed only into the upper mantle.  相似文献   


8.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

9.
According to their genesis, meteorites are classified into heliocentric (which originate from the asteroid belt) and planetocentric (which are fragments of the satellites of giant planets, including the Proto-Earth). Heliocentric meteorites (chondrites and primitive meteorites genetically related to them) used in this study as a characteristic of initial phases of the origin of the terrestrial planets. Synthesis of information on planetocentric meteorites (achondrites and iron meteorites) provides the basis for a model for the genesis of the satellites of giant planets and the Moon. The origin and primary layering of the Earth was initially analogously to that of planets of the HH chondritic type, as follows from similarities between the Earth’s primary crust and mantle and the chondrules of Fe-richest chondrites. The development of the Earth’s mantle and crust precluded its explosive breakup during the transition from its protoplanetary to planetary evolutionary stage, whereas chondritic planets underwent explosive breakup into asteroids. Lunar silicate rocks are poorer in Fe than achondrites, and this is explained in the model for the genesis of the Moon by the separation of a small metallic core, which sometime (at 3–4 Ga) induced the planet’s magnetic field. Iron from this core was involved into the generation of lunar depressions (lunar maria) filled with Fe- and Ti-rich rocks. In contrast to the parent planets of achondrites, the Moon has a olivine mantle, and this fact predetermined the isotopically heavier oxygen isotopic composition of lunar rocks. This effect also predetermined the specifics of the Earth’s rocks, whose oxygen became systematically isotopically heavier from the Precambrian to Paleozoic and Mesozoic in the course of olivinization of the peridotite mantle, a processes that formed the so-called roots of continents.  相似文献   

10.
《Geochimica et cosmochimica acta》1999,63(11-12):1865-1875
Noble metals, Mo, W, and 24 other elements were determined in six SNC meteorites of presumably Martian origin. Based on element correlations, representative siderophile element concentrations for the silicate mantle of Mars were inferred. From a comparison with experimentally determined metal/silicate partition coefficients of the moderately siderophile elements: Fe, Ni, Co, W, Mo, and Ga, it is concluded that equilibrium between core forming metal and silicates in Mars has occurred at high temperatures (around 2200°C) and low pressures (<1 GPa). This suggests that metal segregation occurred concurrently with rapid accretion of Mars, which is consistent with the inference from excess 182W in Martian meteorites (Lee and Halliday, 1997). Concentrations of Ir, Os, Ru, Pt, and Au in the analyzed Martian meteorites, except ALH84001, are at a level of approximately 10−2–10−3 × CI. The comparatively high abundances of noble metals in Martian meteorites require the addition of chondritic material after core formation. The similarity in Au/La and Pt/Ca ratios between ALH84001 and the other Martian meteorites suggests crystallization of ALH84001 after complete accretion of Mars.  相似文献   

11.
Separation of a metal-rich core strongly depleted the silicate portion of the Earth in highly siderophile elements (HSE), including Pt, Re, and Os. To address the issues of how early differentiation, partial melting, and enrichment processes may have affected the relative abundances of the HSE in the upper mantle, 187Os/188Os and 186Os/188Os data for chondrites are compared with data for Os-rich alloys from upper mantle peridotites. Given that 187Os and 186Os are decay products of 187Re and 190Pt, respectively, these ratios can be used to constrain the long-term Re/Os and Pt/Os of mantle reservoirs in comparison to chondrites. Because of isotopic homogeneity, H-group ordinary and other equilibrated chondrites may be most suitable for defining the initial 186Os/188Os of the solar system. The 186Os/188Os ratios for five H-group ordinary chondrites range only from 0.1198384 to 0.1198408, with an average of 0.1198398 ± 0.0000016 (2σ). Using the measured Pt/Os and 186Os/188Os for each chondrite, the calculated initial 186Os/188Os at 4.567 Ga is 0.1198269 ± 0.0000014 (2σ). This is the current best estimate for the initial 186Os/188Os of the bulk solar system. The mantle evolution of 186Os/188Os can be defined via examination of mantle-derived materials with well-constrained ages and low Pt/Os. Two types of mantle-derived materials that can be used for this task are komatiites and Os-rich alloys. The alloys are particularly valuable in that they have little or no Re or Pt, thus, when formed, evolution of both 187Os/188Os and 186Os/188Os ceases. Previously published results for an Archean komatiite and new results for Os-rich alloys indicate that the terrestrial mantle evolved with Pt-Os isotopic systematics that were indistinguishable from the H-group ordinary and some enstatite chondrites. This corresponds to a Pt/Os of 2.0 ± 0.2 for the primitive upper mantle evolution curve. This similarity is consistent with previous arguments, based on the 187Os/188Os systematics and HSE abundances in the mantle, for a late veneer of materials with chondritic bulk compositions controlling the HSE budget of the upper mantle. It is very unlikely that high pressure metal-silicate segregation leading to core formation can account for the elemental and isotopic compositions of HSE in the upper mantle.  相似文献   

12.
The geochemical characteristics and behaviors of highly siderophile elements (HSEs) in forearc peridotites remain poorly constrained due to the scarcity of data. Here, we report HSE abundances of mantle peridotites from the New Caledonia ophiolites, a classical ophiolite generated in a forearc setting. Those peridotites show non‐chondritic, strongly fractionated HSE patterns and can be classified into two distinct types (namely Group I and Group II). Group I peridotites have higher HSE contents than Group II peridotites, which might be because intergranular sulfides were completely removed but sulfide inclusions were retained during partial melting of peridotites in a forearc environment, and meanwhile the distribution of sulfide inclusions are not uniform in mantle. Moreover, Group I peridotites display flat patterns from Os to Pt but strongly depleted in Pd, which resemble those patterns of some mantle wedge xenoliths. The Pt–Pd decoupling can be attributed to high degrees of partial melting. However, Group II peridotites are characterized by strongly positive Ru anomaly with highly super‐chondritic Ru/Os and Ru/Ir ratios. Such characteristics are the first reported cases for forearc peridotites. The fractionation of Ru from other HSEs might reflect the stability of refractory Ru‐rich phases in mantle wedge peridotites during different processes, e.g., partial melting and melt/fluid‐rock reactions.  相似文献   

13.
We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities.Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ∼3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ∼10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body.Phosphate inclusions in EET show Δ17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ∼150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.  相似文献   

14.
The effects of melt percolation on highly siderophile element (HSE) concentrations and Re-Os isotopic systematics of subcontinental lithospheric mantle are examined for a suite of spinel peridotite xenoliths from the 4 Ma Kozákov volcano, Bohemian Massif, Czech Republic. The xenoliths have previously been estimated to originate from depths ranging from ∼32 to 70 km and represent a layered upper mantle profile. Prior petrographic and lithophile trace element data for the xenoliths indicate that they were variably modified via metasomatism resulting from the percolation of basaltic melt derived from the asthenosphere. Chemical and isotopic data suggest that lower sections of the upper mantle profile interacted with melt characterized by a primitive, S-undersaturated composition at high melt/rock ratios. The middle and upper layers of the profile were modified by more evolved melt at moderate to low melt/rock ratios. This profile permits an unusual opportunity to examine the effects of variable melt percolation on HSE abundances and Os isotopes.Most HSE concentrations in the studied rocks are significantly depleted compared to estimates for the primitive upper mantle. The depletions, which are most pronounced for Os, Ir and Ru in the lower sections of the mantle profile, are coupled with strong HSE fractionations (e.g., OsN/IrN ratios ranging from 0.3 to 2.4). Platinum appears to have been removed from some rocks, and enriched in others. This enrichment is coupled with lithophile element evidence for the degree of percolating melt fractionation (i.e., Ce/Tb ratio).Osmium isotopic compositions vary considerably from subchondritic to approximately chondritic (γOs at 5 Ma from -6.9 to +2.1). The absence of correlations between 187Os/188Os and indicators of fertility, as is common in many lithospheric mantle suites, may suggest significant perturbation of the Os isotopic compositions of some of these rocks, but more likely reflect the normal range of isotopic compositions found in the modern convecting mantle. Osmium isotopic compositions correspondingly yield model Re-depletion (TRD) ages that range from essentially modern to ∼1.3 Ga.Our data provide evidence for large-scale incompatible behavior of HSE during melt percolation as a result of sulfide dissolution, consistent with observations of prior studies. The degree of incompatibility evidently depended on melt/rock ratios and the degree of S-saturation of the percolating melt. The high Pt contents of some of these rocks suggest that the Pt present in this pervasively metasomatized mantle was controlled by a phase unique to the other HSE. Further, high Os concentrations in several samples suggest deposition of Os in a minority of the samples by melt percolation. In these rocks, the mobilized Os was characterized by similar to the 187Os/188Os ratios in the ambient rocks. There is no evidence for either the addition of Os with a strongly depleted isotopic composition, or Os with suprachondritic isotopic composition, as is commonly observed under such circumstances.  相似文献   

15.
Thirty-three whole-rock drill core samples and thirteen olivine, chromite, and sulfide separates from three differentiated komatiite lava flows at Alexo and Pyke Hill, Canada, were analyzed for PGEs using the Carius tube digestion ID-ICP-MS technique. The emplaced lavas are Al-undepleted komatiites with ∼27% MgO derived by ∼50% partial melting of LILE-depleted Archean mantle. Major and minor element variations during and after emplacement were controlled by 30 to 50% fractionation of olivine Fo93-94. The emplaced lavas are characterized by (Pd/Ir)N = 4.0 to 4.6, (Os/Ir)N = 1.07, and Os abundances of ∼2.3 ppb. Variations in PGE abundances within individual flows indicate that Os and Ir were compatible (bulk DOs,Ir = 2.4-7.1) and that Pt and Pd were incompatible (bulk DPt,Pd < 0.2) during lava differentiation, whereas bulk DRu was close to unity. Analyses of cumulus olivine separates indicate that PGEs were incompatible in olivine (DPGEsOl-Liq = 0.04-0.7). The bulk fractionation trends cannot be accounted for by fractionation of olivine alone, and require an unidentified Os-Ir-rich phase. The composition of the mantle source (Os = 3.9 ppb, Ir = 3.6 ppb, Ru = 5.4 ppb, Pt and Pd = 5.7 ppb) was constrained empirically for Ru, Pt, and Pd; the Os/Ir ratio was taken to be identical to that in the emplaced melt, and the Ru/Ir ratio was taken to be chondritic, so that the absolute IPGE abundances of the source were determined by Ru. This is the first estimate of the PGE composition of a mantle source derived from analyses of erupted lavas. The suprachondritic Pd/Ir and Os/Ir of the inferred Abitibi komatiite mantle source are similar to those in off-craton spinel lherzolites, orogenic massif lherzolites, and enstatite chondrites, and are considered to be an intrinsic mantle feature. Bulk partition coefficients for use in komatiite melting models derived from the source and emplaced melt compositions are: DOs,Ir = 2.3, DRu = 1.0, DPt,Pd = 0.07. Ruthenium abundances are good indicators of absolute IPGE abundances in the mantle sources of komatiite melts with 26 to 29% MgO, as Ru fractionates very little during both high degrees of partial melting and lava differentiation.  相似文献   

16.
New analyses of highly siderophile elements (HSE; Re, Os, Ir, Ru, Pt, and Pd) obtained by Carius tube digestion isotope dilution inductively coupled plasma mass-spectrometry (ID-ICPMS) technique are reported for 187Os-enriched 2.8 Ga komatiites from the Kostomuksha greenstone belt. As a result of a significant improvement in the yield over our previous digestions by the NiS fire-assay technique, these komatiites have now been shown to contain 22 to 25% more Os, Ir, and Pt and 34% more Ru. The emplaced komatiite lavas at Kostomuksha thus had siderophile element abundances comparable to those of the Abitibi belt. The discrepancies observed between the two techniques are interpreted to be the result of incomplete digestion of HSE carriers (particularly chromite) during the NiS fire-assay procedure. Our results for UB-N peridotite reference material agree well with those obtained by the high-pressure ashing digestion ID-ICPMS technique reported in the literature. Two types of komatiite lavas have been distinguished in this study based on the IPGE (Os, Ir, and Ru) behavior during lava differentiation. The Kostomuksha type is unique and is characterized by an incompatible behavior of IPGEs, with bulk solid-liquid partition coefficients for IPGEs being close to those for olivine. Cumulate zones in this type of komatiite lava occupy <20% of the total thickness of the flows. The Munro type exhibits a compatible behavior of IPGEs during lava differentiation. The cumulate zone in this type of komatiite occupies >20% of the total thickness of the flows. The calculated bulk partition coefficients indicate that, as with the other Munro-type komatiite lavas, the bulk cumulate contained an IPGE-rich minor phase(s) in addition to olivine. The non-CI chondritic HSE pattern for the source of the Kostomuksha komatiites calculated here is similar to that of Abitibi komatiites and to average depleted spinel lherzolite (ADSL) and supports the hypothesis of a non-CI chondritic HSE composition of the Earth’s mantle. The absolute HSE abundances in the source of the Kostomuksha komatiite have been demonstrated to be comparable to those of the source of Abitibi komatiites, even though the two komatiites contrast in their Os isotopic compositions. This supports the earlier hypothesis that if core-mantle interaction produced the 187Os/188Os radiogenic signature in the Kostomuksha source, it must have occurred in the form of isotope exchange at the core-mantle boundary. Other explanations of the radiogenic Os signature are similarly constrained to conserve the elemental abundance pattern in the mantle source of Kostomuksha komatiites.  相似文献   

17.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   

18.
The abundances of the highly siderophile elements (HSE) Ru, Pd, Re, Os, Ir, and Pt were determined by isotope dilution mass spectrometry for 22 ureilite bulk rock samples, including monomict, augite-bearing, and polymict lithologies. This report adds significantly to the quantity of available Pt and Pd abundances in ureilites, as these elements were rarely determined in previous neutron activation studies. The CI-normalized HSE abundance patterns of all ureilites analyzed here except ALHA 81101 show marked depletions in the more volatile Pd, with CI chondrite-normalized Pd/Os ratios (excluding ALHA 81101) averaging 0.19 ± 0.23 (2σ). This value is too low to be directly derived from any known chondrite group. Instead, the HSE bulk rock abundances and HSE interelement ratios in ureilites can be understood as physical mixtures of two end member compositions. One component, best represented by sample ALHA 78019, is characterized by superchondritic abundances of refractory HSE (RHSE—Ru, Re, Os, Ir, and Pt), but subchondritic Pd/RHSE, and is consistent with residual metal after extraction of a S-bearing metallic partial melt from carbonaceous chondrite-like precursor materials. The other component, best represented by sample ALHA 81101, is RHSE-poor and has HSE abundances in chondritic proportions. The genesis of the second component is unclear. It could represent regions within the ureilite parent body (UPB), in which metallic phases were completely molten and partially drained, or it might represent chondritic contamination that was added during disruption and brecciation of the UPB. Removal of carbon-rich melts does not seem to play an important role in ureilite petrogenesis. Removal of such melts would quickly deplete the ureilite precursors in Re/Os and As/Au, which is inconsistent with measured osmium isotope abundances, and also with literature As/Au data for the ureilites. Removal of 26Al during silicate melting may have acted as a switch that turned off further metal extraction from ureilite source regions.  相似文献   

19.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

20.
Separated magnetic and nonmagnetic components from the ordinary chondrites Dhajala (H3.8) and Ochansk (H4) were analyzed for their Re-Os isotopic compositions, as well as for the abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt and Pd. The Re-Os isotopic systematics of these components are used to constrain the timing of HSE fractionations, and assess the level of open-system behavior of these elements in each of the different components. The high precision, isotope dilution mass spectrometric analyses of the HSE are used to constrain the origins of, and possible relations between some of the diverse components present in these chondrites. The relative and absolute abundances of the HSE differ considerably among the components. Metal fractions have Re/Os that are factors of ∼2 (Dhajala) to ∼3 (Ochansk) higher than those of their nonmagnetic fractions. The isotopic data for both meteorites are consistent with the largest Re-Os fractionations occurring between metal and nonmagnetic components early in solar system history, although minor to moderate late stage, open-system behavior, and limited variations in Re/Os preclude a precise determination of the age for that fractionation. Open-system behavior is generally absent to minor in the metal fractions, and highly variable in nonmagnetic fractions. Re/Os ratios of nonmagnetic fractions deviate as much as 40% from a primordial isochron. Although some deviations are large for isochron applications, nearly all are negligible with respect to consideration of fractionation processes controlling the HSE.Metal from both meteorites contains about 90% of the total budget of HSE. Metal in Ochansk has ∼2 to 10 times the abundances of the bulk meteorite, while metal from the matrix of Dhajala has ∼2 to 4 times the abundances of the bulk. Fine metal in both meteorites has higher abundances than coarse metal, as has been previously observed. Nonmagnetic components, consisting of chondrules and matrix from which metal was removed in the laboratory, have highly fractionated HSE, characterized by much lower Re/Os than the bulk meteorites, as well as large relative depletions in Pd. The abundances of Re, Os, Ir, Ru and Pt in the nonmagnetic fractions are 14-120 ng/g, much higher than would be expected if they had equilibrated with the metal phases present (150-16,000 ng/g). Collectively, the data are consistent with the HSE budget in ordinary chondrites being dominated by two HSE-bearing carrier phases with distinct compositions. These phases formed separately, and never subsequently equilibrated. Metal components incorporated a HSE carrier that formed at high through moderate temperatures and relatively high pressures, such that the relatively volatile Pd behaved coherently with the more refractory HSE. Nonmagnetic fractions from both chondrules and matrix have HSE compositions that likely require at least two processes that fractionated the HSE. Depletions in Pd are consistent with the presence of HSE carriers that formed as either highly refractory condensates, or residues of high degrees of metal melting. Depletions in Re may implicate a period of relatively high fO2 during which a volatile form of Re was separated from the other HSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号