首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions.  相似文献   

2.
We present new evolutionary synthesis models for simple stellar populations for a wide range of ages and metallicities. The models are based on the Padova isochrones. The core of the spectral library is provided by the medium resolution Lejeune et al. atmosphere models. These spectra are complemented by Non Local Thermodynamic Equilibrium (NLTE) atmosphere models for hot stars that have an important impact on the stellar cluster's ionizing spectra: O, B and WR stellar spectra at the early ages, and spectra of post asymptotic giant branch stars and planetary nebulae, at intermediate and old ages. At young ages, our models compare well with other existing models, but we find that the inclusion of the nebular continuum, not considered in several other models, significantly reddens the integrated colours of very young stellar populations. This is consistent with the results of spectral synthesis codes particularly devised for the study of starburst galaxies. At intermediate and old ages, the agreement with the literature model is good and, in particular, we reproduce the observed colours of star clusters in Large Magellanic Cloud well. Given the ability to produce good integrated spectra from the far-ultraviolet to the infrared at any age, we consider that our models are particularly suited for the study of high-redshift galaxies. These models are available on the web site http://www.fractal-es.com/SEDmod.htm and also through the Virtual Observatory Tools on the PopStar server.  相似文献   

3.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. A survey of the evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods (Fokker–Planck, Monte Carlo and N -body). The initial rapid mass loss, resulting from stellar evolution of the most massive stars, causes expansion of the whole cluster and eventually leads to the disruption of less bound systems ( W 0=3). Models with larger W 0 survive this phase of evolution and then undergo core collapse and subsequent post-collapse expansion, like isolated models. The expansion phase is eventually reversed when tidal limitation becomes important. The results presented are the first major step in the direction of simulating evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

4.
Supermassive black holes (BHs) obey tight scaling relations between their mass and host galaxy properties such as total stellar mass, velocity dispersion and potential well depth. This has led to the development of self-regulated models for BH growth, in which feedback from the central BH halts its own growth upon reaching a critical threshold. However, models have also been proposed in which feedback plays no role: so long as a fixed fraction of the host gas supply is accreted, relations like those observed can be reproduced. Here, we argue that the scatter in the observed BH–host correlations presents a demanding constraint on any model for these correlations, and that it favours self-regulated models of BH growth. We show that the scatter in the stellar mass fraction within a radius R in observed ellipticals and spheroids increases strongly at small R . At a fixed total stellar mass (or host velocity dispersion), on very small scales near the BH radius of influence, there is an order-of-magnitude scatter in the amount of gas that must have entered and formed stars. In short, the BH appears to 'know more' about the global host galaxy potential on large scales than the stars and gas supply on small scales. This is predicted in self-regulated models; however, models where there is no feedback would generically predict order-of-magnitude scatter in the BH–host correlations. Likewise, models in which the BH feedback in the 'bright' mode does not regulate the growth of the BH itself, but sets the stellar mass of the galaxy by inducing star formation or blowing out a mass in gas much larger than the galaxy stellar mass, are difficult to reconcile with the scatter on small scales.  相似文献   

5.
In this paper I present a summary of the recent investigations we have developed at the Stellar Atmospheres and Populations Research Group (GrAPEs-for its designation in Spanish) at INAOE and collaborators in Italy. These investigations have aimed at providing updated stellar tools for the analysis of the UV spectra of a variety of stellar aggregates, mainly evolved ones. The sequence of material here presented roughly corresponds to the steps we have identified as mandatory to properly establish the applicability of synthetic populations in the analyses of observational data of globular clusters and more complex aged aggregates. The sequence is composed of four main stages, namely, (a) the creation of a theoretical stellar data base that we have called UVBLUE, (b) the comparison of such data base with observational stellar data, (c) the calculation of a set of synthetic spectral energy distributions (SEDs) of simple stellar populations (SSPs) and their validation through a comparison with observations of a sample of galactic globular clusters (GGCs), (d) construction of models for dating local ellipticals and distant red-envelope galaxies. Most of the work relies on the analysis of absorption line spectroscopic indices. The global results are more than satisfactory in the sense that theoretical indices closely follow the overall trends with chemical composition depicted by their empirical counterparts (stars and GGCs).  相似文献   

6.
We have calculated the circumstellar extinction curves produced by dust grains which absorb and scatter the stellar radiation in the shells of pre-main-sequence stars. A Monte Carlo method was used to model the radiative transfer in non-spherical shells. The dependence on the particle size distribution and the dust shell parameters has been examined.The application of the theoretical results to explain the extinction and polarization of the Herbig Be star HD 45677 shows that the dust shell is not disk-like and that very small grains are absent in it.  相似文献   

7.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

8.
We outline the steps needed in order to incorporate the evolution of single and binary stars into a particular Monte Carlo code for the dynamical evolution of a star cluster. We calibrate the results against N -body simulations, and present models for the evolution of the old open cluster M67 (which has been studied thoroughly in the literature with N -body techniques). The calibration is done by choosing appropriate free code parameters. We describe, in particular, the evolution of the binary, white dwarf and blue straggler populations, though not all channels for blue straggler formation are represented yet in our simulations. Calibrated Monte Carlo runs show good agreement with results of N -body simulations not only for global cluster parameters, but also for, for example, binary fraction, luminosity function and surface brightness. Comparison of Monte Carlo simulations with observational data for M67 shows that it is possible to get reasonably good agreement between them. Unfortunately, because of the large statistical fluctuations of the numerical data and uncertainties in the observational data the inferred conclusions about the cluster initial conditions are not firm.  相似文献   

9.
I present an evolutionary stellar population synthesis model which predicts spectral energy distributions, SEDs, for simple old single-metallicity stellar populations, SSPs, in the wavelength intervalsλλ 3856–4476Å and 4795–5465Å at a resolution of FWHM$equals;1.8 $Aring;, on the basis of an extensive empirical spectral library composed of ≈550 stars. The synthesized model spectra can be used to analyse observed galaxy spectra in a very easy and flexible way, allowing us to adapt the theoretical predictions to the characteristics of the data instead of proceeding in the opposite direction (as we must do, for example, when transforming observational data to a particular system of indices at specific resolution/s, such as Lick, which is heavily instrument-dependent).The SSP spectra, with flux-calibrated response curves, can be smoothed to the same resolution as that of the data or to galaxy internal velocity dispersion, allowing us to analyse the observed spectra in their own system, and with no need to correct the index measurements for velocity dispersion. Thus, we are able to use all the information contained in the data, at their higher spectral resolution. Excellent fits are obtained for various metal-rich globular clusters at relatively high resolution, and well known spectral peculiarities such as the strong CN absorption features are detected. When applied to early-type galaxies the model also shows its potential for studying element ratios such as the Mg/Fe overabundance. The model spectra provided robust age indicators for old stellar populations which do not depend on metallicity and therefore have a great potential for solving the age–metallicitydegeneracy of galaxy spectra.  相似文献   

10.
Stellar population models are a very useful tool to derive the stellar cluster age and luminosity mass from its integrated light. Evolutionary synthesis models depend on the stellar evolutionary tracks and the stellar libraries used to predict the spectral energy distribution of the stellar populations. In this review, I briefly comment on the new models that have incorporated the new evolutionary tracks with rotation and new computations for the evolutionary tracks of the TP-AGB. A more extended summary is also given of the current status of the most recent high-resolution stellar libraries at optical wavelengths and their implementation in evolutionary synthesis models. A comparison of the results obtained fitting the optical spectra of LMC and SMC stellar clusters with different high spectral resolution evolutionary synthesis models is also presented.  相似文献   

11.
I review the observational constraints on the stars responsible for the upturn in the UV spectra of ellipticals, ranging from galaxies in the local Universe to distant clusters. In nearby galaxies, this UV upturn is produced by a minority population of extreme horizontal branch (EHB) stars, with the large variations observed in the UV-to-optical flux ratio driven by variations in the number of EHB stars, and not the type of UV-bright stars. Deep UV images of the nearest elliptical galaxy, M32, show that it has a well-populated EHB, even though it has the weakest UV upturn of any known elliptical galaxy. However, M32 suffers from a striking dearth of the hot post-HB stars expected from canonical evolutionary theory. As we observe to larger lookback times in more distant galaxy clusters, the UV upturn fades, as predicted by theories of stellar and galactic evolution, but does so gradually. Because the EHB stars do not appear suddenly in the Universe, their presence is likely driven by a large dispersion in the parameters that govern HB morphology.  相似文献   

12.
The colour–magnitude diagrams of resolved single stellar populations, such as open and globular clusters, have provided the best natural laboratories to test stellar evolution theory. Whilst a variety of techniques have been used to infer the basic properties of these simple populations, systematic uncertainties arise from the purely geometrical degeneracy produced by the similar shape of isochrones of different ages and metallicities. Here we present an objective and robust statistical technique which lifts this degeneracy to a great extent through the use of a key observable: the number of stars along the isochrone. Through extensive Monte Carlo simulations we show that, for instance, we can infer the four main parameters (age, metallicity, distance and reddening) in an objective way, along with robust confidence intervals and their full covariance matrix. We show that systematic uncertainties due to field contamination, unresolved binaries, initial or present-day stellar mass function are either negligible or well under control. This technique provides, for the first time, a proper way to infer with unprecedented accuracy the fundamental properties of simple stellar populations, in an easy-to-implement algorithm.  相似文献   

13.
14.
The eccentricities of the barium stars   总被引:3,自引:0,他引:3  
We investigate the eccentricities of barium (Ba  ii ) stars formed via a stellar wind accretion model. We carry out a series of Monte Carlo simulations using a rapid binary evolution algorithm, which incorporates full tidal evolution, mass loss and accretion, and nucleosynthesis and dredge-up on the thermally pulsing asymptotic giant branch. We follow the enhancement of barium in the envelope of the accreting main-sequence companion and dilution into its convective envelope once the star ascends the giant branch.
The observed eccentricities of Ba  ii stars are significantly smaller than those of an equivalent set of normal red giants but are nevertheless non-zero. We show that such a distribution of eccentricities is consistent with a wind accretion model for Ba  ii star production with weak viscous tidal dissipation in the convective envelopes of giant stars. We successfully model the distribution of orbital periods and the number of observed Ba  ii stars. The actual distribution of eccentricities is quite sensitive to the strength of the tides, so that we are able to confirm that this strength is close to, but less than, what is expected theoretically and found with alternative observational tests. Two systems – one very short-period but eccentric, and one long-period and highly eccentric – still lie outside the envelope of our models, and so require a more exotic formation mechanism. All our models, even those which were a good fit to the observed distributions, overproduced the number of high-period barium stars, a problem that could not be solved by some combination of the three parameters: tidal strength, tidal enhancement and wind accretion efficiency.  相似文献   

15.
We use two methods of constructing the initial mass distribution, the traditional way and Monte Carlo simulation, to obtain integrated U - B, B - V, V-R and V-I colours and absorption-line indices denned by the Lick Observatory image dissector scanner (referred to as Lick/IDS), for instantaneous burst solarmetallicity single stellar populations with ages in the range 1-15 Gyr. We find that the evolutionary curves of all colours obtained by the traditional method are smoother than those by Monte Carlo simulation, that the U - B and B - V colours obtained by the two methods agree with one another, while the V - R and V - I colours by the traditional method are bluer than those by Monte Carlo simulation. A comparison of the Lick/IDS absorption-line indices shows that the variations in all the indices by the traditional method are smoother than that for the Monte Carlo simulation, and that all the indices except for TiO1 and TiO2 are consistent with those for the Monte Carlo simulation.  相似文献   

16.
Spatially resolved studies of star-forming regions show that the assumption of spherical geometry is not realistic in most cases, with a major complication posed by the gas being ionised by multiple non-centrally located stars or star clusters. Geometrical effects including the spatial configuration of ionising sources affect the temperature and ionisation structure of these regions. We try to isolate the effects of multiple non-centrally located stars, via the construction of 3D photoionisation models using the 3D Monte Carlo photoionisation code mocassin with very simple gas density distributions, but various spatial configurations for the ionisation sources.Emission-line spectra from H?ii regions are often used to study the metallicity of star-forming regions, as well as for providing a constraint on temperatures and luminosities of the ionising sources. Empirical metallicity diagnostics must often be calibrated with the aid of photoionisation models. However, most studies so far have been carried out by assuming spherical or plane-parallel geometries, with major limitations on the allowed gas and dust density distributions and with the spatial distribution of multiple, non-centrally located ionising sources not being accounted for. We compare integrated emission-line spectra from our models and quantify any systematic errors caused by the simplifying assumption of a single, central location for all ionising sources. We find that the dependence of the metallicity indicators on the ionisation parameter causes a clear bias, due to the fact that models with a fully distributed configuration of stars always display lower ionisation parameters than their fully concentrated counterparts. The errors found imply that the geometrical distribution of ionisation sources may partly account for the large scatter in metallicities derived using model-calibrated empirical methods.  相似文献   

17.
We present the single stellar population (SSP) synthesis results of our new synthetic stellar atmosphere models library with a spectral sampling of 0.3 Å, covering the wavelength range from 3000 to 7000 Å for a wide range of metallicities (twice solar, solar, half solar and 1/10 solar). The stellar library is composed of 1650 spectra computed with the latest improvements in stellar atmospheres. In particular, it incorporates non-local thermodynamic equilibrium (LTE) line-blanketed models for hot  ( T eff≥ 27 500 K)  , and LTE line-blanketed models (Phoenix) for cool  (3000 ≤ T eff≤ 4500 K)  stars. Because of the high spectral resolution of this library, evolutionary synthesis models can be used to predict the strength of numerous weak absorption lines and the evolution of the profiles of the strongest lines over a wide range of ages. The SSP results have been calculated for ages from 1 Myr to 17 Gyr using the stellar evolutionary tracks provided by the Geneva and Padova groups. For young stellar populations, our results have a very detailed coverage of high-temperature stars with similar results for the Padova and Geneva isochrones. For intermediate and old stellar populations, our results, once degraded to a lower resolution, are similar to the ones obtained by other groups (limitations imposed by the stellar evolutionary physics notwidthstanding). The limitations and advantages of our models for the analysis of integrated populations are described. The full set of the stellar library and the evolutionary models are available for retrieval at the websites http://www.iaa.csic.es/~rosa and http://www.iaa.csic.es/~mcs/sed@ , or on request from the first two authors.  相似文献   

18.
We study the central (inner few hundred parsecs) stellar populations of four starburst galaxies (NGC 34, 1614, 3310 and 7714) in the near-infrared (NIR), from 0.8 to 2.4 μm, by fitting combinations of stellar population models of various ages and metallicities. The NIR spectra of these galaxies feature many absorption lines. For the first time, we fit simultaneously as much as 15 absorption features in the NIR. The observed spectra are best explained by stellar populations containing a sizable amount (20–56 per cent by mass) of ∼1-Gyr-old stellar population with thermally pulsing asymptotic giant branch stars. We found that the metallicity of the stars which dominates the light is solar. Metallicities substantially different from solar give a worse fit. Though the ages and metallicities we estimate using the NIR spectroscopy are in agreement with values from the literature based on the ultraviolet/optical, we find older ages and a larger age spread. This may be due to the fact that the optical is mostly sensitive to the last episode of star formation, while the NIR better maintains the record of previous stellar generations. Another interesting result is that the reddening estimated from the whole NIR spectrum is considerably lower than that based on emission lines. Finally, we find a good agreement of the free emission-line spectrum with photoionization models, using as input spectral energy distribution the synthetic composite template we derived as best fit.  相似文献   

19.
The acoustic energy-generation rate from the convective zone was calculated for various models. Results show that chromosphere and corona can be expected around stars with temperature lower than 8000K at the main sequence, and lower than 6500K at logg=2.When a star is rotating rapidly, mass loss from its corona is large, and can be an effective mechanism of braking the stellar rotation. If this mechanism is effective, we can explain the slow rotation of stars later than F2 to be the result of the loss of the angular momentum through a stellar wind that is effective in their main sequence phase. Stars with massM>1.5M lose mass through a stellar wind during their contraction phase. The mass-loss rate is larger than the solar value because of the larger energy input into the chromosphere-corona system and because of the smaller gravitational potential at the surface. T Tauri stars may be the observational counterparts for such stars. As the duration of contraction phase is very short (less than 107 years), the braking mechanism works only in the presence of a strong magnetic field (Ap) or in the presence of a companion (Am).Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

20.
We have studied the evolution of isolated galaxies over several Gyr using a self-consistent N-body code including stars, gas and star formation. The results of our simulations are calibrated using spectrophotometric evolution models. We thus simultaneously analyse kinematical and photometrical evolution of the various stellar populations born during the successive bursts of star formation. Our calibrated simulations show that the properties of stellar velocity dispersion drops observed in the centre of three barred active galaxies by Emsellem et al. (2001) could depend on the observational wavelength. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号