首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A radiotracer technique, employing 27Mg, is used to determine the Mg released by ammonium exchange on undis-solved humic acid in a seawater medium. This new method allows for the measurement of exchangeable Mg on the solid phase surface, which eliminates the problem caused by the high-Mg background in the seawater matrix. The precision calculated from the counting statistics is better than ±2%; the reproducibility among repeated counts ranged from ±1% to ±3%. The higher sensitivity of the method allows for monitoring the Mg---NH4 exchange at concentrations as low as 30 mM NH4. This is a major improvement relative to the data obtained with the analytical methods used so far, which allow detection of exchangeable Mg only at NH4 concentrations higher than 1 M. The lower experimental concentrations are more in accordance with the natural ammonium levels found in anoxic marine sediments. For the undissolved humic acid used in this experiment, the amount of exchangeable Mg in apparent equilibrium with an ammonium-free seawater matrix was found to be 96.6 ± 0.4 meq/100g. The Mg---NH4 exchange on humic acid in seawater comes to a steady-state value in < 18 min. The conditional equilibrium constant obtained for this reaction, Kcond = 0.039 ± 0.001 M−1. The technique can be expanded to other geochemical solid phases in seawater and it can be modified to study the behavior of the major cations by using 24Na, 42K and 49Ca.  相似文献   

2.
Sediments of the western part of the Valjevo-Mionica basin (Serbia) were examined both geochemically and mineralogically to explain, on the basis of their sedimentologicai characteristics, the causes of changes in their qualitative and quantitative composition. A total of 62 samples obtained from the drillhole at depths up to 400 m was investigated. Using correlation of the obtained data, six geochemical zones were defined, two of which being specially distinguished by their mineralogical, geochemical and sedimentological characteristics. The first one, upper zone A, consists of banded marlstones interbedded with clay and oil shales and is characterized by presence of analcite and searlesite. These minerals and very high contents of Na20 indicate sedimentation in alkaline conditions with increased salinity in arid climate. That provided pronounced water stratification, as well as higher bioproductivity in the basin and sedimentary organic matter preservation. Therefore, the zone A sediments are characterized by high organic matter contents of the type which provides good potential for production of liquid hydrocarbons. Another specific zone, zone F, contains sediments with very high MgO, K2O and Li concentrations. Their geochemical correlation, as well as almost complete absence of illite in this zone, indicates the presence of interstratified clay mineral type illite-saponite (lithium-bearing Mg-smectite).  相似文献   

3.
Clay minerals, byproducts of chemical weathering, are important group of minerals found in rivers, estuaries, and marine sedimentary environments, which include mudstones, clay stones, and shales. In the present study, FTIR and SEM investigation on the clay minerals in Sundarban mangrove core sediments collected from Moipith Matla and Belamati Island are carried out. The study indicated the dominant association of kaolinite with subordinate amount of quartz, illite and chlorite. The abundance of kaolinite, illite chlorite and clay with quartz helps in increasing sediment in the islands region. The geochemical and mineralogical evolution of mangrove sediments are results of the interaction of biotic and abiotic parameters, whose balance is conditioned by the climate that governs the hydrologic regime, the sedimentation dynamics and the organic matter. This study on the charaterstation of clay provides us with substantial impact in the water holding capacity, productivity and mineralogical and chemical transformation in order to establish much more and intermediate equilibrium between marine influence and continental contribution, as part of the estuarine environment, than to the tropical climate conditions.  相似文献   

4.
A sequential extraction procedure applied to surface sediments from El Kelbia Lagoon determined the partitioning of Ba, Co, Cr, Cu, Ni, Sr, V and Zn among evaporites, carbonates, Fe–Mn oxides, organic matter and silicates. To validate the procedure, the sequential extraction results (SER) were compared to principal components analysis (PCA) using major and trace element concentrations and mineralogical quantitative data of surface sediments. SER showed that a part of Sr was highly mobile; Cu, Sr, and Zn and a part of Co and Ni were mobile depending on pH conditions; Cr and V were strongly bound to silicate phases; Co and Ni were partitioned between carbonates, oxides and silicates, and a great part of Ba and Sr were bound to organic matter or sulfides. An agreement was found with PCA in terms of partitioning among minerals for most trace elements. Moreover, the absence of correlation between Ca concentrations and the abundances of calcite, gypsum or dolomite could be explained by an important fraction of Ca bound to organic matter. Also, unexpected negative correlations between abundances of smectite and illite could be explained by a transformation of illite into smectite. Thus, SER and PCA were mostly convergent, which enabled: (1) validation of the extraction procedure used, and (2) refinement of interpretations of the origin and relations between minerals.  相似文献   

5.
Visible to infrared reflectance spectroscopic analyses (0.3-25 micromoles) have been performed on sediments from the Dry Valleys region of Antarctica. Sample characterization for these sediments includes extensive geochemical analyses and X-ray diffraction (XRD). The reflectance spectra and XRD indicate major amounts of quartz, feldspar, and pyroxene in these samples and lesser amounts of carbonate, mica, chlorite, amphibole, illite, smectite, and organic matter. Calcite is the primary form of carbonate present in these Lake Hoare sediments based on the elemental abundances and spectroscopic features. The particle size distribution of the major and secondary components influences their detection in mixtures and this sensitivity to particle size is manifested differently in the "volume scattering" and "surface scattering" infrared regions. The Christiansen feature lies between these two spectral regimes and is influenced by the spectral properties of both regions. For these mixtures the Christiansen feature was found to be dependent on physical parameters, such as particle size and sample texture, as well as the mineralogy. Semiquantitative spectroscopic detection of calcite and organic material has been tested in these quartz- and feldspar-rich sediments. The relative spectral band depths due to organics and calcite correlate in general with the wt% C from organic matter and carbonate. The amounts of organic matter and carbonate present correlate with high Br and U abundances and high Ca and Sr abundances, respectively. Variation in the elemental abundances was overall minimal, which is consistent with a common sedimentary origin for the forty-two samples studied here from Lake Hoare.  相似文献   

6.
南海颗粒物质的通量、组成及其与沉积物积累率的关系初探   总被引:15,自引:0,他引:15  
通过大孔径时间系列沉积物捕获器的多年测量及对样品的多学科综合分析表明:南海北部与中部深海区1000m左右水深颗粒通量大约为90mg·m-2·d-1,在多数情况下,季风期间的颗粒通量有比较明显的增高。颗粒物主要组成为钙质生物来源的CaCO3、生物硅、岩源物质及海洋生物来源的有机质。颗粒通量与组成在水柱中的垂向变化表明,生源组分中CaCO3及有机质随深度具有较为明显的减少。颗粒物侧向运动可能是造成某些时段南海中部深层颗粒通量增加的主要原因。颗粒物质在进入深海沉积物之前,CaCO3、生物硅均在深层水与沉积物界面之间发生大量的溶解作用。有机质在沉降过程中的减少,一方面是由于硅质与钙质壳体的溶解而使结合在壳体内部的有机质随之溶解造成;另一方面可能与生物及生物地球化学作用有关。岩源物质除水柱沉降之外,还可以通过浊流等底层搬运机制进入南海北部及中部海盆,其中在南海北部这种搬运作用更为明显。  相似文献   

7.
The Upper Red Formation (URF) comprises over 1–5 km of late Miocene siliciclastic sediments in the Central Iran Basin. The formation is dominated by volcaniclastic conglomerates and arenites. The prevailing arid conditions during most of the basin's history resulted in deposition of predominantly organic‐poor, red sediments with gypsum and zeolites. This investigation concentrates on the mineralogy and geochemistry of the URF in the southern and northern margins of the basin where the formation was buried to depths of 2.4 and 6.6 km, respectively. Fine fraction mineral separates from the southern margin consist of nearly pure smectite and zeolites at a depth of 400 m and smectite with minor quartz and calcite at 1800 m. Shallow samples (1350 m) from the northern section are rich in smectite, illite/smectite with some discrete illite and chlorite. This assemblage is progressively replaced by discrete illite and chlorite with increasing burial depth so that only these two minerals are found at depths greater than 4300 m. The initial alteration process involved replacement of glass and volcanic lithics by smectite and zeolites in both margins of the basin. Increased depth of burial in the northern margin resulted in the progressive isochemical alteration of smectite to discrete illite and chlorite. Diagenesis of clay assemblages occurred essentially in a closed system. Solute products of glass hydrolysis reactions were retained in highly alkaline, saline ground waters from which zeolites, carbonates and oxides precipitated as cements. It is unlikely that these sediments were ever significantly leached by meteoric waters or by organic acids generated during burial diagenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

9.
Ambient exchangeable ammonium concentrations in freshwater sediments are generally considerably greater than those reported for marine sediments. Laboratory measurements indicate that competition for cation exchange sites by ions in seawater is a factor responsible for the lower exchangeable ammonium concentrations in marine sediments. Exchangeable ammonium concentrations were 3- to 6-fold higher when river and estuarine sediments were incubated with fresh water relative to the same sediments incubated with salt water (%.-23). A model was developed to explore the implications for benthic nitrogen cycling of this salinity effect on exchangeable ammonium concentrations. Ammonium diffusion, exchangeable and dissolved ammonium concentrations, and nitrification rates were components of the model formulation. The model output suggests that higher exchangeable ammonium concentrations predicted in fresh water relative to marine sediments can markedly increase the fraction of the ammonium produced in sediments that is nitrified (and subsequently denitrified). These results are consistent with field and experimental laboratory data which indicate that a larger percentage of net ammonium production in aerobic freshwater sediments is nitrified and denitrified (80–100%) relative to marine sediments (40–60%).  相似文献   

10.
As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).There is a remarkable homogeneity in the sedimentary distribution along the reservoir in terms of the texture and mineralogy of the clay fraction and of the chemistry of the total, soluble and exchangeable phases. These observations contrast with the physical, morphological and chemical heterogeneity of the soils and the setting lithology. Most of the sediments has a higher contribution of fine-grained material and the mineralogy of the clay fraction is dominated by kaolinite in soils and kaolinite and illite in sediments, followed by lesser amounts of gibbsite, goethite, and metahaloisite and by small/vestigial contents of chlorite and smectite. The sediments are mainly inherited from the watershed but there exist marked differences between the accumulated sediments and their parent materials. These differences mainly come from the selective erosion of fine-grained particles and the extreme climatic conditions which enhance complex transformations of mineralogical and chemical nature. Compared with the parental soils, the reservoir sediments show the following differences: (1) enrichment in fine-grained and less dense inorganic particles, (2) aggradative mineralogical transformations, including enrichment in clay minerals with higher cationic adsorption and exchange capacity, (3) degradation of the crystalline structure of Fe- and Al-oxides (goethite, gibbsite), (4) increase in easily leached elements (Mg, Ca, P, K, Na) and decrease in chemically less mobile elements (Si, Fe) and (5) higher contents of organic carbon, nitrogen, and soluble forms of P and K, mainly concentrated in the clay fraction. These transformations are extremely important in the nutrients cycle, denoting that sediments represent an efficient sink for nutrients from the over-erosion of soils. Mineral and organic compounds can permanently or temporarily sequester these nutrients, recycling them and enhancing their availability through the slow release of components from relatively loose crystal structures. These processes can easily explain the enrichment in soluble and exchangeable forms of elements such as P, K, Ca or Mg. This study conclude that the particles recycling in a large tropical dam reservoir which receives high fluxes of allochthonous nutrients, has an important role in the good quality of sediments for agricultural use and in the profitable use of this technology to recover depleted soils in remediation projects in regions near large hydroelectric plants.  相似文献   

11.
董宏坤  万世明  刘喜停 《沉积学报》2022,40(5):1172-1187
海洋沉积物的早期成岩作用是其沉积和埋藏过程中发生的一系列生物、物理和化学变化,其驱动力为有机质的降解,根据反应自由能大小,参与反应的氧化剂顺序为:O2>NO3->Mn4+>Fe3+>SO42-。随着埋深增加,形成一系列氧化—还原化学带,并推动着海底沉积物中部分自生矿物的生成及C、N、S、Fe、Mn等元素的地球化学循环和同位素分馏。一系列有机质降解反应会改变原生沉积物中保存的地球化学信息,对古环境和古气候的研究具有重要意义。在早期成岩作用过程中,有机质降解产生的碳酸根离子和钙离子、亚铁离子结合会形成方解石、文石、菱铁矿等碳酸盐矿物。硫酸盐还原产生的还原态硫最终与亚铁离子形成黄铁矿。此外,目前常用于氧化还原环境重建的代用指标有:1)Fe组分;2)Corg/P比值;3)氧化还原敏感微量元素;4)Mo、U同位素。围绕海洋沉积物早期成岩作用中的矿物和元素地球化学行为,评述了早期成岩作用过程中有机质降解反应机制,探讨了反应进程中发生的元素地球化学循环和同位素分馏,以及相伴生的碳酸盐矿物和黄铁矿等自生矿物的形成机理。最后,总结了现有研究的不足,并对未来的研究方向进行了展望。  相似文献   

12.
《Quaternary Science Reviews》2004,23(3-4):261-281
The organic carbon content of marine sediments is commonly used as a proxy for export production. However, in continental margin sediments a large fraction of the organic matter may be of terrestrial origin, and it is necessary to correct the total organic carbon data accordingly. Radiocarbon dating of bulk organic carbon, organic geochemistry and isotope data (δ13C and δ15N) are used here to characterize the type of organic matter present in Core JT96-09 collected at a water depth of 920 m on the slope off Western Canada. The quantities of marine and terrestrial organic carbon are then estimated using the δ13C data. The 16 kyr record obtained from Core JT96-09 suggests that accumulation of total organic carbon was highest during the late glacial and deglacial, but geochemical data indicate that as much as 70% of this carbon is terrestrial in origin. When the palaeo-record is corrected for this terrigenous input it is observed that accumulation of marine organic matter, and presumably marine export production, increased at the end of the last glacial contemporaneous with the Bølling, and that it peaked during the Allerød. Data from other palaeoproductivity proxies (i.e., bio-barium, opal and alkenones) also indicate relatively high productivity during the deglacial. These results indicate a return to modern upwelling conditions and high marine export production at ∼14.3 calendar kyr BP and a period of enhanced upwelling, relative to the present, during the Allerød.  相似文献   

13.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

14.
Based on the sedimentary geochemical studies of the Antarctic Ocean and the various geochemical parameters available,this paper deals with the process of emobilization of iodine in marine sediments during early diagenesis.The results showed that the process is not always controlled completely by organic matter as was expected previously.On average the adsorption and oxide phases of iodine account respectively for 23% and 32% of the total in continental-shelf and hemipelagic surficial sediments.Chemical analysis has revealed that the upward diffusion flux and redox conditions would play an important role in the concentration of iodine in the surface sediments.And the species of iodine in the surfial sediments characteristic of high I/Corg ratios would bepredominated by the oxide and adsorption phases.As experimentally evidenced,it is the early diagenetic remoibilization of iodine associated with the oxide and adsorption phases that led to the decrease of I/Corg with increasing depth.Calculations suggested that the diffusion flux of iodine from the deep parts of te sedimentary columum upwards is on the same order of magnitude as the deposition flux of it from sea water.This may be one of the important factors leading to the depletion of iodine in sedimentary rocks.On the basis of the above discussion and calculations the author has proposed a model for the remobilization of iodine in marine sediments during early diagenesis.  相似文献   

15.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

16.
The prerequisite for obtaining variations of terrigenous grain-size of marine sediments is how to effectively remove non-terrigenous matters and preserve terrigenous particles synchronously. Combined with observations under biological microscope and scanning electron microscope, a comparative study of biogenic debris removal effect and terrigenous grain-size analysis under different pretreatment condition was performed on core sediments, which were retrieved in the South China Sea during the MD190 cruise. Our new results showed that the main three biogenic particles, namely, organic matter, carbonate, and opal in marine sediments could be removed effectively by 30% H2O2 in a stirring water bath at 60 ℃ for 3 h, 0.5% HCl for 1 h, and 2 mol/L Na2CO3 in a stirring water bath at 85 ℃ for 5 h, in turn. Such pretreatments achieved the goals of biogenic debris removal efficiency and relatively well-preserved terrigenous particles. Prior to selecting an appropriate pretreatment method, this study suggested that the actual effects of biogenic detritus on grain-size results of diverse marine sediment samples should be taken into account. If the laboratory data are ensured to be closer to the natural grain-size distribution of terrigenous particles, the removals of all biogenic debris are not always needed, and the less pretreatment processes the better. For example, opal particles have little effect on terrigenous grain-size distribution when their percentage is lower than 2%. Thus, there is no use to remove them from marine sediments before laboratory grain-size analysis of terrigenous particles. Additionally, ultrasonic is not suggested through the whole process of terrigenous grain-size analysis because the strong energy of ultrasonic can lead to the fragmentation of some fragile terrigenous particles.  相似文献   

17.
The clay mineralogy of the Newark Supergroup (Upper Triassic/Lower Jurassic) in the Connecticut Valley was studied by X-ray diffraction analysis. Clay minerals identified in 126 samples are illite, chlorite, smectite, kaolinite, vermiculite, expandable chlorite, mixed-layer illite/smectite, mixed-layer chlorite/smectite, and mixed-layer chlorite/vermiculite. In general, the rocks are illitic with subordinate amounts of chlorite. However, the various lithofacies in the Newark Supergroup are characterized by distinct clay-mineral assemblages. Red beds of floodplain origin contain clays mainly of detrital nature with 2M illite most abundant. Subordinate amounts of chlorite, smectite, vermiculite, kaolinite and mixed-layer illite/smectite are also present. An interstratified chlorite/vermiculite occurs in red mudstone underlying basalt flows. Lacustrine gray beds are generally characterized by the clay-mineral assemblage 1Md illite + chlorite with minor amounts of smectite ane expandable chlorite. An interstratified chlorite/smectite predominates in gray mudstone associated with perennial lake cycles in the East Berlin Formation. Black shales of deeper lacustrine origin contain the assemblage 1Md ifillite + trioctahedral smectite and traces of chlorite. Illite and smectite also occur as mixed-layer phases.In many respects, the distribution of clay minerals in the Connecticut Valley can be likened to the general scheme proposed for the Permo-Triassic basins of Europe and Africa. These display both vertical and horizontal variations in clay-mineral assemblages that reflect the chemical and spatiotemporal evolution of intrabasin depositional and diagenetic environments. Chemical data indicate that magnesium, especially, was concentrated in the black muds of large perennial lakes that intermittently occupied the Connecticut rift valley. Pore waters derived from these sediments played an important role in the development of Mg-rich 2 : 1 and interstratified clay minerals during early diagenesis.  相似文献   

18.
The cereal soils of the Northwest of Tunisia derive most of the time, from alluvial deposits or altered remains of carbonated and clayey rocks. Extraction of the clayey fraction permitted to reveal the presence of the following clayey minerals: kaolinite, illite, smectite, chlorite, as well as an illite–smectite interstratified layer, which is present in the deep horizons of the vertisol and in the isohumic soil. The presence of such types of clays shows that the evolution mechanism of soils is weathering of primary minerals inherited from the sedimentary rocks of the Northwest of Tunisia. These clays ensure to soils most of their cationic exchange capacity. Thanks to these clays, which have Ca++, Mg++ and K+ as exchangeable cations, the chemical fertility of these soils is ensured. It may be improved by increasing contents of organic matter, which is naturally few abundant in these soils. To cite this article: H. Ben Hassine, C. R. Geoscience 338 (2006).  相似文献   

19.
From 14 deeps and other regions of the Red Sea totally 226 samples from 28 cores recovered during the VALDIVIA cruises (1971, 1972) were investigated according to their clay mineral content (<2μm resp. < 6.3 μm) after carbonate dissolution. Three facies groups are to distinguish:
  1. normal sediments: dominance of chlorite, kaolinite, illite, small amounts of smectite and sepiolite. Two palygorskite types are present only in a few samples.
  2. normal sediments with hydrothermal influence: clay mineral paragenesis similar like that of normal sediments; but increase of smectite and presence of goethite in each sample; partly small contents of talc.
  3. heavy metal deposits: dominance of iron-bearing smectite, partly with amorphous components resp. pure ore mineral assemblages with authigenic silicates (talc, quartz, opal, chrysotile, sepiolite, palygorskite, chlorite).
Crystallinity of the clay and ore minerals is independent from sedimentary overburden. Sepiolite shows in small amounts a wide distribution; palygorskite2 (d110=11.3 Å) yields locally an increased concentration in the range of pteropod layers cemented by aragonite. The environment of ore deposits is characterized by iron-bearing smectite besides the ore minerals.  相似文献   

20.
对伊豆-小笠原海脊(ODP 782A孔)上新世以来沉积物中黏土矿物的组成、含量及矿物学特征进行了分析,结果表明:黏土矿物以伊利石(42%)和蒙皂石(42%)为主,绿泥石的平均含量为14%,高岭石的含量最低,平均仅为2%。伊利石的结晶度较好,平均为0.25°Δ2θ;化学指数较低,平均为0.31;表明伊利石主要形成于干冷的气候环境。通过将ODP 782A孔黏土矿物组合特征和含量与周边可能源区对比,并结合伊利石和蒙皂石的矿物学参数特征,我们认为蒙皂石主要来源于伊豆-小笠原海脊周边岛弧火山物质;伊利石、绿泥石和高岭石主要来自亚洲大陆风尘。上新世以来(伊利石+绿泥石)/蒙皂石比值总体上呈增加的趋势,并且在5.3~3.6、3.6~1.6、1.6~0 Ma的三个阶段表现出不同的变化特征,该比值与全球深海δ18O值所记录的全球变冷、北太平洋ODP 885/886孔风尘通量和灵台黄土沉积速率,以及日本海U1430站伊利石/蒙皂石比值所指示的亚洲内陆干旱变化的总体变化趋势和阶段性变化的时间点大致同步,表明该比值敏感地响应了全球变冷和亚洲内陆的干旱。上新世以来(伊利石+绿泥石)/高岭石比值表现为高/低交替变化,分别与中国灵台黄土磁化率高/低变化相对应,由于黄土磁化率记录了亚洲内陆干/湿变化,因此该黏土矿物比值敏感地响应了亚洲内陆的古气候变化,因而可以作为可靠的亚洲大陆干/湿变化示踪指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号