首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
侯马盆地冲积扇及其流域地貌发育规律   总被引:4,自引:0,他引:4  
根据从DEM数据中提取的侯马盆地冲积扇及其流域的多项地貌指标,分析了各地貌指标的空间分布规律,并通过地貌指标的空间分布曲线与山前地形高程曲线形态的对比以及地貌指标相关性分析来揭示冲积扇及其流域地貌的发育规律。结果表明,在侯马盆地相对隆起部位的冲积扇及其流域的地貌指标与在盆地凹陷部位的冲积扇及其流域的地貌指标有较大差异;流域地貌指标的空间分布受到盆地边界断层构造活动性的影响;冲积扇的发育主要受到流域规模、山前构造活动以及盆地基准面等多种因素共同的影响;流域内岩性的差异不是造成研究区域内冲积扇地貌差异的主要因素。  相似文献   

2.
Measurements of discharge and suspended sediment and organic matter yield from nine different drainage basins on the island Disko in central West Greenland were carried out in the period 19–30 July 1997. A series of landscape properties (glacier cover, altitude, slope, aspect and vegetation cover) were measured for each drainage basin from a digital elevation model and a satellite image. Principal Component Analysis and regression statistics have been used to examine which landscape parameters dominate the measured discharges and yields. It is concluded that differences in suspended sediment and organic matter yield between the drainage basins can be explained by the measured morphometric properties while differences in water run-off can not. Glacier cover percentage and percent area above 800 m a.s.l. were the most important parameters influencing suspended sediment and organic matter yield in the drainage basins on Disko during the study period.  相似文献   

3.
祁连山、贺兰山与吕梁山山前冲积扇上的农地对比   总被引:2,自引:0,他引:2  
不同地区冲积扇上农地发育特征的对比可以揭示环境条件与农地发育的关系。本文以Lansat卫星ETM+遥感影像、DEM和野外考察资料为基础,研究了祁连山、贺兰山与吕梁山三个地区山前冲积扇的地貌特征和扇上农地的发育特征,探讨了影响冲积扇上农地发育的因素。结果表明,吕梁山地区扇上农地比例最高,自扇顶到扇缘均有农地发育,其次为祁连山地区,农地主要发育在一些被黄土覆盖的冲积扇的老扇面上,贺兰山地区冲积扇上农地比例最低,农地多分布在扇缘区域;物质组成是影响冲积扇上农地发育的直接因素;相关性分析表明,祁连山和吕梁山地区冲积扇上的农地发育受黄土沉积过程影响显著,而贺兰山前冲积扇上农地发育更多地受冲积扇地貌过程的影响。  相似文献   

4.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

5.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

6.
岔巴沟流域次暴雨产沙统计模型   总被引:30,自引:2,他引:28  
流域综合治理规划、防治土壤侵蚀、合理利用水沙资源 ,无不需要掌握流域产沙情况。流域产沙统计模型结构简单 ,计算方便 ,是现有产沙预报的强有力工具。本文以陕西省岔巴沟流域及其支流实测降雨水文资料为基础 ,系统地分析了流域产沙的降雨、径流、地貌因子在流域产沙中的作用 ,进而将影响产沙的因素概括为径流深、洪峰流量、流域面积、流域沟道密度 ,并作为产沙预报的指标 ,建立了岔巴沟流域次暴雨产沙的统计模型。经检验 ,该预报公式具有一定的精度。  相似文献   

7.
A stability model of drainage basin mass balance is used to interpret historic and prehistoric patterns of sediment production, storage and output from the Waipaoa River basin, New Zealand and assess the sensitivity of basin sediment yield to land use change in the historic period. Climate and vegetation cover changed during the late Holocene, but the drainage basin mass balance system was stable before the basin was deforested by European colonists in the late 19th and early 20th centuries. In this meso‐scale dispersal system sediment sources and sinks are closely linked, and before that time there was also little variability in the rate of terrigenous mass accumulation on the adjacent continental shelf. However, despite strong first‐order geologic controls on erosion and extensive alluvial storage, sediment delivery to the continental shelf is sensitive and highly responsive to historic hillslope destabilization driven by land use change. Alluvial buffering can mask the effects of variations in sediment production within a basin on sediment yield at the outlet, but this is most likely to occur in basins where alluvial storage is large relative to yield and where the residence time of alluvial sediment is long relative to the time scale of environmental change. At present, neither situation applies to the Waipaoa River basin. Thus, the strength of the contemporary depositional signal may not only be due to the intensity of the erosion processes involved, but also to the fact that land use change in the historic period destabilized the drainage basin mass balance system.  相似文献   

8.
土地覆被对黄河中游流域泥沙产生的影响   总被引:15,自引:3,他引:15  
卢金发  黄秀华 《地理研究》2003,22(5):571-578
本在黄河中游地区选择了近60个水测站流域,流域面积从500~2500km^2,分别代表6种不同自然地理类型。运用遥感方法和专题地图,结合野外实地调查,在流域泥沙及植被、地面物质等数据采集的基础上,利用数理统计方法,建立了流域产沙量与植被、地面物质之间的定量关系。结果表明,植被和地面物质对流域产沙量有着十分重要的影响。流域产沙量与植被之间呈现相当好的非线性负相关关系,而与地面物质呈明显的线性正相关关系。流域产沙量随植被变化存在着二个临界值,一是当流域植被覆盖度等于30%时,另一是当植被覆盖度等于70%时。这一现象以往只是在试验小区或试验流域见到,而本的研究表明,类似的现象在天然河流流域也存在。多元回归表明,在影响流域产沙量诸因素中,植被的影响是最重要的,其次是地面物质。  相似文献   

9.
River response to variations of periglacial climate in mid-latitude Europe   总被引:1,自引:0,他引:1  
The Last Glaciation was characterised by considerable changes in climate. Many European river basins reacted to these changes by initial incision and subsequent pattern change. Earlier research explained this by the time lag of vegetation development after a climatic change, which considerably affected the sediment load. However, since some river basins react differently, or do not react at all, this model needs to be refined. This paper deals with the fluvial evolution of several rivers in northern and central Europe during the Last Glaciation, and two of them, the Weiße Elster river in the Leipzig area and the Spree river in the Niederlausitz (Germany), are discussed in more detail. The vegetation cover on the floodplain, in combination with the presence of frozen ground, which affects the discharge characteristics, largely determines the river type. Nevertheless, when the sequences are compared, not only synchronous changes in fluvial development may be observed, but also distinct differences in fluvial development. By analysing the different rivers in their varying geomorphological settings, it appears that grain size, basin configuration and catchment size are important parameters also, which can determine whether a threshold is exceeded or not.  相似文献   

10.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   

11.
ABSTRACT Foreland basins form by lithospheric flexure under orogenic loading and are filled by surface transport of sediment. This work readdresses the interplay between these processes by integrating in a 3D numerical model: the mechanisms of thrust stacking, elastic flexural subsidence and sediment transport along the drainage network. The experiments show that both crustal tectonic deformation and vertical movements related to lithospheric flexure control and organise the basin-scale drainage pattern, competing with the nonlinear, unpredictable intrinsic nature of river network evolution. Drainage pattern characteristics are predicted that match those observed in many foreland basins, such as the axial drainage, the distal location of the main river within the basin, and the formation of large, long-lasting lacustrine systems. In areas where the river network is not well developed before the formation of the basin, these lithospheric flexural effects on drainage patterns may be enhanced by the role of the forebulge uplift as drainage divide. Inversely, fluvial transport modifies the flexural vertical movements differently than simpler transport models (e.g. diffusion): Rivers can drive erosion products far from a filled basin, amplifying the erosional rebound of both orogen and basin. The evolution of the sediment budget between orogen and basin is strongly dependent on this coupling between flexure and fluvial transport: Maximum sediment accumulations on the foreland are predicted for a narrow range of lithospheric elastic thickness between 15 and 40 km, coinciding with the T e values most commonly reported for foreland basins.  相似文献   

12.
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906–1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000–2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km− 2 yr− 1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage.  相似文献   

13.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

14.
The sediment flux from a mountainous catchment can be expressed as a function of a landslide rate constant κ which accounts for the vigour of hillslope erosion. Since the incising drainage network flushes all or a portion of the products of hillslope erosion to a range front where fan deposition takes place, a conservation of solid sediment volume allows the fan area and progradation distance to be calculated. These parameters are related primarily to the discharge of sediment from the catchment and to local tectonic subsidence.
A survey of modern alluvial fans in a wide range of climatic and tectonic settings shows that the effects of climate and bedrock lithology cannot be discriminated in the scatter of data of catchment area vs. fan area. However, by focusing on over 100 fans in the arid and semiarid zone of SW USA, the impact of tectonic subsidence rate is unambiguous. Although further quantitative data on local tectonic subsidence rates are urgently required, our preliminary analysis suggests considerable potential for reconstructing palaeocatchments where basin tectonic subsidence rates can be estimated. The progradation distances of fans from the northern and southern margins of the Middle Devonian Hornelen Basin of Norway, and the western and north-eastern margins of the Mio-Pliocene Ridge Basin, California, allow catchment sizes and denudation rates to be approximated. Although unique solution sets are not possible, an iteration of parameter values allows plausible parameter combinations to be calculated which shed light on the tectonic and sedimentary history of the proximal basin and upland source regions. Model results suggest significant asymmetry in basin subsidence rates, catchment slopes and transport mechanics between the two margins.  相似文献   

15.
小江流域泥石流堆积扇形成的制约因素及其特征   总被引:6,自引:3,他引:3  
陈杰  韦方强  崔鹏 《地理科学》2005,25(6):704-708
在系统分析了各种因素对泥石流堆积扇形成影响的基础上,提出流域腹地中流域面积、沟床比降和堆积区主河河谷宽度及主河能量等因素对泥石流堆积扇发育的影响较大。结合TM卫星影象和1:5万地形图,解译了小江流域内泥石流堆积扇的范围。在此基础上,统计了流域腹地内两大重要条件-流域面积和沟床比降与堆积扇面积之间的关系。在小江流域,堆积扇的面积随流域面积的增加而增加,二者之间是正的指数关系;而堆积扇面积与沟床比降之间可用一个负的指数关系式表达。最后,堆积区特征对小江流域泥石流堆积扇的影响主要是其堆积空间限制了大型堆积扇,比如蒋家沟泥石流堆积扇的发展。  相似文献   

16.
Glacial Lake Agassiz, the largest of the North American glacial lakes, discharged through several different outlets during its history, although the timing and location of discharge remain controversial. However, one discharge event is well established based on extensive onshore observations: drainage through the Nipigon Lake area into the Superior basin about 10,700 years ago, following retreat of ice of the Marquette advance from the basin. High-resolution, single-channel seismic-reflection data collected with a small airgun were acquired to test the hypothesis that the Post-Marquette drainage event left diagnostic stratigraphic and geomorphic signatures beneath Lake Superior. The unique bathymetry of northwestern Lake Superior, where water depth plunges off Nipigon and Black Bays, makes this location ideal for the characterization of the post-Marquette depositional and erosional features. According to our hypothesis, the initial, sudden discharge of high-velocity water would have eroded channels through the bays. The steep and sudden drop-off into the Superior basin would have caused the flow to slow and drop much of the sediment it was carrying. Our results confirm the existence of both erosional features and depositional sediment packages related to Lake Agassiz discharge at this time. The erosional features include deeply incised bedrock channels in the bays. The depositional features comprise subaqueous fans that are thickest in the deep water areas adjacent to the outlets and thin lakeward and laterally away from the channels. The seismic character of the basal units of the fans, proximal to the channels, is chaotic and only very weakly stratified, suggesting that these deposits represent coarse sediment laid down during the initial, high-energy stages of the flood. These sediments are overlain by a stratified package which is interpreted as the fine grained sediment associated with the later, low-energy stages of the flood. The combination of channels and subaqueous fans is inferred to be diagnostic of high-energy Lake Agassiz discharge into the Superior basin, and they serve as analogs for hypothesized discharge at other times.  相似文献   

17.
18.
For an ecological characterization of river basins we suggest that the indicator of soil-productive potential should be used, which characterizes the ability of the natural or natural-anthropogenic ecosystem to reproduce under certain soil-climatic conditions the phytomass and which summarized long-term evidence for the productivity of vegetation cover, phytomass accumulation, some soil properties, and for the factors influencing the activity of production processes. The state of ecosystems can be assessed both from the summarizing values of soil-productive potential and from the parameters forming part thereof. For a soilproductive characterization of ecosystems at a particular time, it is proposed to use the Normalized Difference Vegetation Index (NDVI) which is determined from remote sensing data and reflects the overall state of soilvegetation cover. Results are presented from a comparative assessment of the soil-productive potential for small river basins that form part of the basin the Klyaz’ma river, a tributary of the Oka river. The indicators characterizing the soil-productive potential may be recommended for monitoring operations, a calculation of anthropogenic pressure within drainage basins, and for the organization of a rational land-use pattern.  相似文献   

19.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water.  相似文献   

20.
Sediment supply and climate change: implications for basin stratigraphy   总被引:8,自引:3,他引:5  
The rate of sediment supply from erosional catchment to depositional basin depends primarily upon climate, relief, catchment slope and lithology. It varies in both time and space. Spatial changes in erosion rates due to variations in lithology are illustrated by contrasting rates of drainage divide migration away from faults of known ages. Time variations in relative sediment supply are extremely complex and vary widely according to the direction and magnitude of climate change. In many parts of the Great Basin and south-western USA, glacial maximum climates were characterized by higher effective moisture and the altitudinal downward spread of woods and forests. Sparse data from alluvial fans indicate reduced sediment supply, despite the increased runoff evident from higher lake levels. The situation in Mediterranean areas is less clear, with rival climatic scenarios for vegetation ecotypes predicting contrasting runoff. In order to test these latter we run Cumulative Seasonal Erosion Potential [CSEP] experiments for present-day and a variety of full-glacial Mediterranean candidate climates. The results indicate the likelihood of enhanced sediment supply and runoff compared to the present day during full-glacial times for a cool wet winter climate and a reduction in sediment supply and runoff for a full-glacial cool dry winter climate. We then explore the consequences of such phase differences in sediment supply, and sea and lake levels for the stratigraphy of sedimentary basins. Highstands and lowstands of sea or lake may be accompanied by greater or lesser sediment and water supply, as determined by the regional climate and the direction of climatic change. Thus marine lowstands are not necessarily periods of great transfer of coarse clastic sediments to shelves and deep water basinal environments. Unsteady sediment supply has greatest implications for alluvial systems, in particular the effect that changing relative supplies of water and sediment have upon river and fan channel incision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号