首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

2.
Eclogite fades rocks in this area are diverse in rock type. The field occurrence and rock-chemistry reflect theirin-situ origin. Based on their regional geology and field occurrence, two groups of eclogites are divided in terms of their peak temperature of metamorphism. Medium-temperature eclogites (MT), as Group B, occur in the Dabie Group. They were formed from epidote-amphibolite facies. The metamorphism of eclogite facies has two stages: the coesite eclogite facies stage (the peak condition:T = 600 -700°C,P = 2.7-3.0 GPa) and the glaucophane eclogite facies stage (the pressure decreases, may be lower than 2.5 GPa while the temperature has little change). Low temperature eclogites (LT), as Group C, occur in the Qijiaoshan Formation. They were formed from blue schist facies (the peak condition:T = 490–560°C,P< 1.5 GPa). The appearance of hydrous minerals in the eclogites indicates the important role of water in metamorphism. Medium-temperature eclogites are different from low-temperature ones in metamorphism. At last, the evolution of the high-pressure metamorphic belt is discussed as well. This research project was financially supported by the National Natural Science Foundation of China (No. 49372100).  相似文献   

3.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

4.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

5.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   

6.
The high-grade metamorphic terrane in the Badu region along the northeastern Cathaysia Block in South China preserves retrograded eclogites and mafic granulites. Here we present the petrology, mineral phase equilibria and P-T conditions based on pseudosection computations, as well as zircon U-Pb ages of these rocks. Mineral textures and reaction relationships suggest four metamorphic stages for the retrograded eclogite as follows: (1) eclogite facies stage (M1), (2) clinopyroxene retrograde stage (M2), (3) amphibole retrograde stage (M3), and (4) chlorite retrograde stage (M4). For the mafic granulite, three stages are identified as: (1) plagioclase-absent stage (M1), (2) granulite facies stage (M2) and (3) amphibolite facies stage (M3). Metamorphic evolution of both of the rock types follows clockwise P-T path. Conventional geothermometers and geobarometers in combination with phase equilibria modelling yield metamorphic P-T conditions for each metamorphic stage for the eclogite as 500–560 °C, 23–24 kbar (M1), 640–660 °C, 14–16 kbar (M2), 730–750 °C, and 11–13 kbar (M3). The chlorite retrograde stage (M4) is inferred to have occurred at lower amphibolite to greenschist facies conditions. Phase equilibria modelling of the mafic granulite shows P-T conditions for each metamorphic stage as 600–720 °C, > 13 kbar (M1) and 860–890 °C, 5–6 kbar (M2) and M3 at amphibolite facies conditions. LA-ICPMS zircon U-Pb dating and trace element analysis show that the high pressure metamorphism occurred at 245–251 Ma. Protolith age of the mafic granulite is 997 Ma, similar to that of the mafic to ultramafic rocks widely distributed in the Cathaysia Block and also along the Jiangnan belt. Subduction of ancient oceanic lithospheric materials (or crustal thickening) during Mesozoic and formation of eclogites suggest that the Cathaysia Block was perhaps in the Tethyan oceanic domain at this time. The granulite formation might have been aided by Mesozoic mafic magma underplating associated with lithospheric delamination, heating and retrogression of the eclogite accompanied by rapid uplift.  相似文献   

7.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

8.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

9.
Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran   总被引:1,自引:0,他引:1  
Summary Metabasic rocks were recently found within a ductile shear zone in the north of Shahrekord, being a part of the structural zone of Sanandaj-Sirjan, SW Iran. The rocks give evidence of a so far unrecognized eclogite facies metamorphic event and testify to high pressure metamorphism in the Sanandaj-Sirjan Zone, near the Main Zagros Reverse Fault, which is the assumed suture zone between the Arabian plate and the Iranian block. The eclogites occur as lenses or blocks within ortho- and paragneisses. The petrographic features and reaction textures display at least two main metamorphic stages: (1) a peak eclogite facies stage, and (2) a subsequent amphibolite facies stage. The eclogite facies metamorphism is indicated by omphacite + garnet + sodic-calcic amphiboles (barroisite, magnesiokatophorite and magnesiotaramite) + phengite + rutile + (clino-)zoisite + quartz ± dolomite. The garnets are mainly almandine-rich, which fits with the C-type eclogite classification. Calcic amphiboles (hornblende, tschermakite and pargasite) + plagioclase are secondary phases formed during the retrograde amphibolite-facies metamorphism. P-T estimates for the eclogite facies give pressures of 21–24 kbar and temperatures of 590–630 °C (geothermometry) and 470–520 °C (THERMOCALC), respectively. Geothermobarometry for the amphibolite-facies metamorphism yields 10–11 kbar and 650–700 °C. Author’s address: Ali Reza Davoudian, Department of Natural Resources, Shahrekord University, Shahrekord, Iran  相似文献   

10.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

11.
The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.  相似文献   

12.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

13.
A largely undocumented region of eclogite associated with a thick blueschist unit occurs in the Kotsu area of the Sanbagawa belt. The composition of coexisting garnet and omphacite suggests that the Kotsu eclogite formed at peak temperatures of around 600 °C synchronous with a penetrative deformation (D1). There are local significant differences in oxygen fugacity of the eclogite reflected in mineral chemistries. The peak pressure is constrained to lie between 14 and 25 kbar by microstructural evidence for the stability of paragonite throughout the history recorded by the eclogite, and the composition of omphacite in associated eclogite facies pelitic schist. Application of garnet‐phengite‐omphacite geobarometry gives metamorphic pressures around 20 kbar. Retrograde metamorphism associated with penetrative deformation (D2) is in the greenschist facies. The composition of syn‐D2 amphibole in hematite‐bearing basic schist and the nature of the calcium carbonate phase suggest that the retrograde P–T path was not associated with a significant increase or decrease in the ratio of P–T conditions following the peak of metamorphism. This P–T path contrasts with the open clockwise path derived from eclogite of the Besshi area. The development of distinct P–T paths in different parts of the Sanbagawa belt shows the shape of the P–T path is not primarily controlled by tectonic setting, but by internal factors such as geometry of metamorphic units and exhumation rates.  相似文献   

14.
Lawsonite eclogite (metabasalt and metadolerite) and associated metasedimentary rocks in a serpentinite mélange from an area just south of the Motagua fault zone (SMFZ), Guatemala, represent excellent natural records of the forearc slab–mantle interface. Pseudosection modelling of pristine lawsonite eclogite reproduces the observed predominant mineral assemblages, and garnet compositional isopleths intersect within the phase fields, yielding a prograde PT path that evolves from 20 kbar, 470 °C (M1) to 25 kbar, 520 °C (M2). The dominant penetrative foliation within the eclogite blocks is defined by minerals developed during the prograde evolution, and the associated deformation, therefore, took place during subduction. Thermometry using Raman spectra of carbonaceous material in metasedimentary rocks associated with the SMFZ eclogites gives estimates of peak‐T of ~520 °C. Barometry using Raman spectroscopy shows unfractured quartz inclusions in garnet rims retain overpressures of up to ~10 kbar, implying these inclusions were trapped at conditions just below the quartz/coesite transition, in agreement with the results of phase equilibrium analysis. Additional growth of Ca‐rich garnet indicates initial isothermal decompression to 20 kbar (M3) followed by hydration and substantial cooling to the lawsonite–blueschist facies (M4). Further decompression of the hydrated eclogite blocks to the pumpellyite–actinolite facies (3–5 kbar, 230–250 °C) is associated with dehydration and veining (M5). The presence of eclogite as m‐ to 10 m‐sized blocks in a serpentinite matrix, lack of widespread deformation developed during exhumation and derived prograde PT path associated with substantial dehydration of metabasites within the antigorite stability field suggest that the SMFZ eclogites represent the uppermost part of the forearc slab crust sampled by an ascending serpentinite diapir in an active, moderate‐T subduction zone.  相似文献   

15.
The paper presents original authors’ data on aluminous schists in the Tsogt tectonic plate in the Southern Altai Metamorphic Belt. The nappe includes a medium-temperature/medium-pressure zonal metamorphic complex, whose metamorphic grade varies from the greenschist to epidote-amphibolite facies. The garnet and garnet–staurolite schists contain three garnet generations of different composition and morphology. The P–T metamorphic parameters estimated by mineralogical geothermometers and geobarometers and by numerical modeling with the PERPLEX 668 software provide evidence of two successive metamorphic episodes: high-gradient (of the andalusite–sillimanite type, geothermal gradient approximately 40–50°/km) and low-gradient (kyanite–sillimanite type, geothermal gradient approximately 27°/km). The P-T parameters of the older episode are T = 545–575°C and P = 3.1–3.7 kbar. Metamorphism during the younger episode was zonal, and its peak parameters were T = 560–565°C, P = 6.4–7.2 kbar for the garnet zone and T = 585–615°C, P = 7.1–7.8 kbar for the staurolite zone. The metamorphism evolved according to a clockwise P–T path: the pressure increased during the first episode at a practically constant temperature, and then during the second episode, the temperature increased at a nearly constant pressure. Such trends are typical of metamorphism related to collisional tectonic settings and may be explained by crustal thickening due to overthrusting. The regional crustal thickening reached at least 15–18 km.  相似文献   

16.
The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the orogenic belt:the high-pressure eclogite and ultra-high pressure eclogite were formed by the subduction of theoceanic crust northward beneath the North China plate or the Dabie block during theCaledonian; while the epidote-blueschist belt came into being by subdution and collision be-tween the two continental plates during the Indosinian. (5) Due to the continuous sequentialsubduction of the cold plate, the ultra high-presssure metamorphic rocks were uplifted to thecrust by the underplating processes. They can be preserved just because of the "frozen effect" re-sulting from the continuous subduction of the cold plate. (6) The carbonates, such as magnesite,breunnerite, aragonite and dolomite, and the H_2O-bearing minerals, such as phengite, epidoteand zoisite, were stable during the high-pressure and/or ultra-high pressure metamorphism.  相似文献   

17.
The Kulet eclogite in the Kokchetav Massif, northern Kazakhstan, is identified as recording a prograde transformation from the amphibolite facies through transitional coronal eclogite to fully recrystallized eclogite (normal eclogite). In addition to minor bodies of normal eclogite with an assemblage of Grt + Omp + Qz + Rt ± Ph and fine‐grained granoblastic texture (type A), most are pale greyish green bodies consisting of both coronal and normal eclogites (type B). The coronal eclogite is characterized by coarse‐grained amphibole and zoisite of amphibolite facies, and the growth of garnet corona along phase boundaries between amphibole and other minerals as well as the presence of eclogitic domains. The Kulet eclogites experienced a four‐stage metamorphic evolution: (I) pre‐eclogite stage, (II) transition from amphibolite to eclogite, (III) a peak eclogite stage with prograde transformation from coronal eclogite to UHP eclogite and (IV) retrograde metamorphism. Previous studies made no mention of the presence of amphibole or zoisite in either the pre‐eclogite stage or coronal eclogite, and so did not identify the four‐stage evolution recognized here. P–T estimates using thermobarometry and Xprp and Xgrs isopleths of eclogitic garnet yield a clockwise P–T path and peak conditions of 27–33 kbar and 610–720 °C, and 27–35 kbar and 560–720 °C, respectively. P–T pseudosection calculations indicate that the coexistence of coronal and normal eclogites in a single body is chiefly due to different bulk compositions of eclogite. All eclogites have tholeiitic composition, and show flat or slightly LREE‐enriched patterns [(La/Lu)N = 1.1–9.6] and negative Ba, Sr and Sc and positive Th, U and Ti anomalies. However, normal eclogite has higher TiO2 (1.35–2.65 wt%) and FeO (12.11–16.72 wt%) and REE contents than those of coronal eclogite (TiO2 < 0.9 wt% and FeO < 12.11 wt%) with one exception. Most Kulet eclogites plot in the MORB and IAB fields in the 2Nb–Zr/4–Y and TiO2–FeO/MgO diagrams, although displacement from the MORB–OIB array indicates some degree of crustal involvement. All available data suggest that the protoliths of the Kulet eclogites were formed at a passive continent marginal basin setting. A schematic model involving subduction to 180–200 km at 537–527 Ma, followed by slab breakoff at 526–507 Ma, exhumation and recrystallization at crustal depths is applied to explain the four‐stage evolution of the Kulet eclogite.  相似文献   

18.
The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase‐bearing assemblages under eclogite facies conditions. Coesite eclogites are found <200 m structurally above and <1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late‐orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re‐equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (> 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.  相似文献   

19.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

20.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号