首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Particulate organic and black carbon concentrations in rain were determined in various source or remote regions, in order to gain information on the incorporation of atmospheric carbonaceous particles in hydrometeors. The analyses of rainwaters indicate that all the samples contained particles derived from combustion. Data obtained on a sample basis, show an important areal and temporal variability of the composition of rain carbonaceous particles, a variability which is reported to that of the black carbon to total carbon ratio, Cb/Ct, ranging from 10 to 72%. In addition to the fluctuations of the aerosol atmospheric burden, these variations may be related to alterations of the organic fraction of the particles or their involvement in in-cloud nucleation processes during atmospheric transport. Also, a comparison of the mean relative abundance of black carbon in aerosols and in rainwaters, gives evidence of a partial disappearance of the organic particles, a phenomenon which could be due to their dissolution when incorporated in the hydrometeors. Precipitation scavenging ratio values of black carbon particles, which range from 100 to 370, are similar to those found for sulphate anthropogenic aerosols. Due to their hygroscopic properties and mean size, black carbon aerosols could possibly trace the physico-chemical processes involved in the incorporation of fine combustion particles into hydrometeors. It is also suggested that smoke particles may act as cloud condensation nuclei (CCN). Consequently, emissions of particulates derived from combustion in some tropical or industrial regions could result locally in alteration of cloud albedo and precipitation regimes.  相似文献   

2.
Some 30 years of physical and chemical marine aerosol data are reviewed to derive global‐size distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log‐normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals.  相似文献   

3.
夏季硫酸盐和黑碳气溶胶对中国云特性的影响   总被引:1,自引:2,他引:1  
利用WRF-Chem(Weather Research and Forecasting model coupled with Chemistry)模式研究2006年8月1日—9月1日中国区域硫酸盐和黑碳气溶胶对云特性的影响。模式验证利用了卫星和地面观测的气象要素、化学物质浓度、气溶胶光学特性和云微物理特性。模式性能评估表明该模式能较好地抓住气象要素(温度、降水、相对湿度和风速)的量级和空间分布特征。通过与地面观测和MODIS卫星数据对比发现,尽管模式模拟还存在偏差,但还是能较好模拟出气溶胶物种的地表浓度、气溶胶光学厚度(AOD)、云光学厚度(COD)、云量(CLDF)、云顶云滴有效半径(CER)和云水路径(LWP)。通过两个敏感性试验(分别增加二氧化硫和黑碳排放量至控制试验排放的3倍)与控制试验的对比发现硫酸盐比黑碳更易成为云凝结核,在中国东部云顶云滴数浓度和其它云特性参数对二氧化硫排放增加的响应均从北向南呈递增,这与地面湿度分布有关。云滴有效半径对硫酸盐气溶胶的响应符合气溶胶第一间接效应的定义,即硫酸盐气溶胶增多,云滴数浓度增加,云滴有效半径减少,但是对黑碳气溶胶的响应在各区域不尽相同。还发现黑碳对云量的影响远大于硫酸盐,主要原因是由于黑碳气溶胶直接辐射效应(对太阳光的吸收)导致的云的“燃烧”作用。   相似文献   

4.
CAM5模式中两气溶胶模块的评估   总被引:3,自引:1,他引:2       下载免费PDF全文
公共大气模式 (CAM) 被广泛用于气候变化研究中,其5.0版中包含两个气溶胶模块MAM3和MOZART。利用AeroCom (2000年) 多模式中值、IMPROVE (1988—2005年) 和EMEP (2002—2008年) 站点资料对两模块进行了评估。结果表明:MAM3和MOZART模块都能很好地模拟硫酸盐气溶胶的季节变化, 与观测资料相比,模拟结果均在夏季偏高, 相关系数均在0.89左右,2倍误差内。两模块能较好地模拟黑碳气溶胶的时空分布特征, 与观测资料相比,模拟结果偏低,相关系数均在0.62左右, 排放源偏小而清除率偏大是造成黑碳气溶胶偏低的主要原因。两模块对有机碳气溶胶的模拟结果差别较大,大部分站点在3倍误差内,MAM3的结果偏高92.1%,MOZART则偏低58.1%;两模块一次有机碳的结果接近,差异主要源自对二次有机碳的模拟。两模块模拟的海盐气溶胶偏大,这主要是清除率偏小造成的。两模块采用相同的起沙机制,但起沙系数有差异, MAM3的沙尘源强偏大近两倍,模拟总量较大;MOZART的沙尘源强则偏低40%左右,模拟沙尘总量较低。即模式中气溶胶的输送和扩散过程偏弱,说明清除机制还有待改进。  相似文献   

5.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   

6.
An aerosol dynamics model, AEROFOR2, is developed in the context of the BIOFOR project focussing on boreal forest aerosol. It is the second version of a Lagrangian type box model AEROFOR for investigating the formation and growth of particles under clear sky atmospheric conditions. Particles can consist of soluble and insoluble material and the particle population can be externally or internally mixed. AEROFOR2 includes gas phase chemistry and aerosol dynamics, and calculates the number and composition distributions of particles as functions of time. Observed growth rates of the nucleation mode particles after a typical nucleation event are 2–3 nm/h. The model simulations predict that 3·107 molecules cm−3 of insoluble organic vapour and less than 6·106 molecules cm−3 of soluble vapour condensing onto particles are enough to make them grow in good agreement with the observed growth rates. Then the source rate of the organic vapour must be an order of 105 molecules cm−3 s−1, and its saturation vapour density should be below 106 molecules cm−3. If the aerosol was initially an internal mixture of soluble (70%) and insoluble (30%) constituents it transformed to an externally mixed aerosol during the simulation. By applying the externally‐mixed aerosol based on measured soluble volume fractions, it was concluded that the modelled soluble fraction of the nucleation mode was too low in comparison with the measurements, and thus, a part of the condensable organic vapour must be water soluble.  相似文献   

7.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

8.
We propose an analytical expression for the relation between aerosol accumulation number and sub‐micron volume over the marine boundary layer (MBL), based on a simple balance equation. By providing appropriate source and sink terms which account for entrainment, coagulation, in‐cloud scavenging and condensational growth, the model is able to reproduce the observed ratio between MBL particles larger than 80 nm diameter (as a proxy for accumulation mode number) and submicron aerosol volume, from freshly polluted to background conditions. Entrainment and coagulation are essential in predicting the observed ratio. Budget and lifetime calculations show that, due to relatively low source rates of oceanic non‐sea‐salt‐sulfate and sea‐salt, the anthropogenic signature in aerosol volume remains significant even after 8 days of MBL transport.  相似文献   

9.
The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4^2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4^2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4^2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.  相似文献   

10.
We used an online aerosol–climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea–land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea–land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea–land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.  相似文献   

11.
Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.  相似文献   

12.
During the second Arctic Gas and Aerosol Sampling Program conducted in April 1986, we performed measurements of the optically absorbing carbonaceous component of the ambient aerosol from the NOAA WP-3D aircraft operating between sea level and 10 km altitude. We collected the aerosol of filters that were exposed for several hours; we also operated the aethalometer to measure the concentration of aerosol black carbon in real time. The filter analyses represent averages over the altitude range and time span during which the filter was collecting. The real-time results were sorted by altitude to calculate vertical profiles of black carbon concentration. Values typically ranged from 300 to 500 ng m–3 at lower altitudes, decreasing gradually to 25 to 100 ng m–3 at 8–10 km. Strong stratification at lower altitudes was frequently observed. The magnitude of these concentrations suggests that the sources are distant regions of considerable fuel consumption. The presence of this material in the tropospheric column and its probable deposition to the high-albedo surface may result in perturbations of the solar radiation balance. The concentrations measured at the highest altitudes may mean that particulate carbon and accompanying emissions for which it is a tracer are mixing into the stratosphere.  相似文献   

13.
During late austral summer and winter 1998, black carbon (BC) aerosols were monitored with an Aethalometer at 2 sites of La Réunion Island (Indian Ocean): Saint‐Denis, the main city and Sainte‐Rose, a quite uninhabited region situated at the east coast. BC concentration data at Saint‐Denis show a marked diurnal cycle, which may be primarily attributed to traffic. The background data found at night‐time display average BC concentrations, ranging from about 80 to 250 ng/m3 whereas during the day, BC concentrations increase by a factor of at least 4. In comparison, BC concentrations vary in the range of 10 to 60 ng/m3 at Sainte‐Rose. Ozone concentration was also measured at Saint‐Denis using a Dasibi photometer and found to be at significant levels (means: 16.5–23 ppbv in April and 28.5–34 ppbv in September). A noticeable increase of ozone concentrations during the day points out the build‐up of pollutants enhancing photochemical transformations. However, during traffic pollution peaks, ozone concentration displays systematic depletion. The comparison of ozone and BC measurements at both seasons points to some possible effects of heterogeneous interaction of ozone and its precursors with BC particles. These interactions were also simulated with a 0D time‐dependent chemistry model using conditions of a polluted site. The measured ozone concentration characteristics (mean concentration and range of variation) are well simulated in the presence of BC. Our model results show that at La Réunion Island adsorption of ozone and its precursors onto BC aerosol particles could be one of the important steps determining ozone concentration characteristics, especially in absence of photochemistry during night‐time.  相似文献   

14.
During the ACE‐2 field campaign in the summer of 1997 an intensive, ground‐based physical and chemical characterisation of the clean marine and continentally polluted aerosol was performed at Sagres, Portugal. Number size distributions of the dry aerosol in the size range 3–10 000 nm were continuously measured using DMPS and APS systems. Impactor samples were regularly taken at 60% relative humidity (RH) to obtain mass size distributions by weighing the impactor foils, and to derive a chemical mass balance by ion and carbon analysis. Hygroscopic growth factors of the metastable aerosol at 60% RH were determined to estimate the number size distribution at a relative humidity of 60%. A size segregated 3‐way mass closure study was performed in this investigation for the first time. Mass size distributions at 60% RH derived from number size distribution measurements and impactors samples (weighing and chemical analysis) are compared. A good agreement was found for the comparison of total gravimetrically‐determined mass with both number distribution‐derived (slope=1.23/1.09; R2>0.97; depending on the parameters humidity growth and density) and chemical mass concentration (slope=1.02; R2= 0.79) for particles smaller than 3 μm in diameter. Except for the smallest impactor size range relatively good correlations (slope=0.86–1.42) with small deviations (R2=0.76–0.98) for the different size fractions were found. Since uncertainties in each of the 3 methods are about 20% the observed differences in the size‐segregated mass fractions can be explained by the measurement uncertainties. However, the number distribution‐derived mass is mostly higher than the chemically and gravimetrically determined mass, which can be explained by sampling losses of the impactor, but as well with measurement uncertainties as, e.g., the sizing of the DMPS/APS.  相似文献   

15.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

16.
A modelling platform for studying photochemical gaseous and aerosol phase processes from localized (e.g., point) sources has been presented. The current approach employs a reactive plume model which extends the regulatory model RPM‐IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, nitrate, ammonium material of aerosols are treated and attributed to the PM size distribution. A modified version of the carbon bond IV chemical mechanism is included to model the formation of organic aerosol. Aerosol dynamics modeled include mechanisms of nucleation, condensation, dry deposition and gas/particle partitioning of organic matter. The model is first applied to a number of case studies involving emissions from point sources and sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions. In addition, the model is compared with field data from power plant plumes with satisfactory predictions against gaseous species and total sulphate mass measurements. Finally, the plume model is applied to study secondary organic matter formation due to various emission categories such as vehicles and the oil production sector.  相似文献   

17.
青海瓦里关大气气溶胶元素富集特征及其来源   总被引:15,自引:3,他引:15       下载免费PDF全文
利用中子活化及PIXE和可见光灰度仪, 对青海瓦里关大气本底基准监测站的大气气溶胶样品进行了测量。通过元素相对浓度、富集因子和主因子分析等数据统计分析, 并结合同期的气团后退轨迹分布资料, 讨论了瓦里关大气气溶胶元素的组成及来源。结果表明, 位于青藏高原偏远地区的瓦里关大气气溶胶以土壤及地壳等自然来源为主, 因子分析的方差百分数给出瓦里关气溶胶中自然源的贡献率平均在70%以上。燃煤、交通及冶炼等人为源也占有一定比例。大气黑碳气溶胶的观测也表明人类活动影响的存在。人为源的影响多与来自东部及河西走廊等经济发达地区的气流有关。  相似文献   

18.
A statistic regression approach was used to estimate the wavelength exponents of black carbon(BC)and dust particles,and further to separate the contributions of the two types of aerosols to the total light absorption coefficient measured in the Beijing urban area in the spring of 2006.The results show that the wavelength exponent(α)of black carbon aerosol at urban site was approximately-0.92.which is in agreement with the value of-0.8±0.2 reported in related studies.The decoupling analysis of the measured light absorption coefficients during the three floating dust periods(March 25,March 27,and April 9)demonstrates that,on average,the light absorption caused by dust particles took up about 32.8% of the total light absorption at 520 nm wavelength,and by black aerosol more than 60%.This indicates that the black carbon was still the major contributor to the total aerosol light absorption in Beijing urban area even during the floating dust periods.  相似文献   

19.
基于新耦合气溶胶气候模式FGOALS-f3-L模拟分析了2002-2011年青藏高原地区气溶胶时空分布特征.结果表明:青藏高原地区,沙尘,硫酸盐,碳质气溶胶(包括黑碳,有机碳和混合碳)地表质量浓度分别占比为53.6%,32.2%,14.2%;在拉萨站点,模拟的气溶胶地表质量浓度被低估,尤其是黑碳和有机碳气溶胶;模拟的气溶胶光学厚度(AOD)时空分布与卫星观测结果较为一致,均方根误差和偏差分别为0.081和0.036;由于模式中沙尘排放参数化的不确定性,模式对AOD的模拟效果在夏季和秋季优于春季.  相似文献   

20.
To improve our understanding of aerosol formation and ageing in urban atmospheres, we have tested the ORISAM 0-D aerosol module (ORganic and Inorganic Spectral Aerosol Model). This module accounts for both types of primary carbonaceous particles (black carbon BC and primary organic carbon OCp) and also simulates the formation of secondary inorganic and organic particles (sulfates, nitrates, ammonium, water and secondary organic carbon particles OCsec) by attachment of gas precursors to pre-existing carbonaceous particles. Simulations were performed for surface aerosols over Greater Paris area during the ESQUIF summer 1998 and winter 2000 experiments. Results show that OCsec formation is highly dependent on temperature and insolation with more intense secondary formation in summer than in winter. Moreover in Summer, when atmospheric conditions shift from warm and humid to hot and dry, the model indicates a decreasing formation of secondary organic aerosols OCsec as shown by an increase of the OCp/(OCp+OCsec) ratio from 42 to 56%. These results satisfactorily compare with the few experimental available data for BC/(OCp+OCsec) ratios increasing from 24 to 37% against modelled values in the range 21–32%. ORISAM module sensitivity to initial size distributions, background concentrations and emissions of gases and primary carbonaceous particles was documented too. One main result is that the formation of secondary organic particles with ORISAM is very sensitive to the concentrations of gaseous precursors. At the present stage of ORISAM development, OCsec build up appears to be however less sensitive to particulate background concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号