首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was undertaken to prepare an inventory on soil erosion of a hilly river watershed — the Aglar watershed, part of Tehri Garhwal and Dehradun districts (U.P.), using terrain physiography and soil survey data obtained from interpretation and analysis of Landsat TM FCC (1:62,500 scale) and limited ground investigations. The watershed is divided into four broad physiographic units viz. higher Himalayas (> 2000m elevation); lower Himalayas (< 2000m elevation); river terraces and flood plains. Each physiographic unit has been further divided into subunits on the basis of aspects and landuse. Three major orders of soils viz. Inceptisols, Mollisols and Entisols were found in different physiographic units. Soil, and land properties of soilscape units viz. soil depth, texture, structure, slope, landuse and soil temperature regime were evaluated for soil-erosion hazard. The results indicate that in the whole watershed 19.13%, 45.68%, 26.51% and 7.92% areas have been found to be under none to slight, moderate, severe and very severe soil erosion hazard categories, respectively.  相似文献   

2.
黄河三角洲盐碱地遥感调查研究   总被引:85,自引:1,他引:85  
土壤盐渍化是干旱、半干旱农业的主要的土地退化问题,有关盐碱地的性质、范围、面积、地理分布及盐渍程度等方面的实时、可靠的信息,对治理盐碱地防止其进一步退化和进行农业可持续发展规划至关重要,提出运用Landsat TM遥感数据来获取这些信息。基于地物光谱特征、野外调查建立的地物与影像之间的关系以及土壤和地下水监测数据的辅助,将常规监督分类法和改进的图像分类法两种方法相结合,提取了不同盐渍程度的盐碱地,即光板地14477.67hm^2,重度盐碱地52086.33hm^2,中度盐碱地86699.61hm^2,轻度盐碱地215001.7hm^2,占黄河三角洲总面积的近二分之一(47.4%),除此之外,水体,滩涂,非盐碱地等也作了区分。  相似文献   

3.
Visual interpretation of LANDSAT imagery of 1∶250,000 scale (band 5 and 7) and 1∶1 M (FCC) covering 1611 km2 in Mewat area, Haryana was carried out for delineating the physiographic units. The physiographic units viz. hills, piedmont plain, intermontane basin and Yamuna alluvial plain were identified and delineated using interpretation elements. Soils and land use in relation to the physiographic units were studied during the field visit and are described in the paper.  相似文献   

4.
Development of salt-affected soils in the irrigated lands of arid and semi-arid region is major cause of land degradation. Hyperion hyperspectral remote sensing data (EO-1) was used in the present study for characterization and mapping of salt-affected soils in a part of irrigation command area of Indo-Gangetic alluvial plains. Linear spectral mixture analysis approach was used to map various categories of salt affected soils represented by spectral endmembers of slightly, moderately and highly salt-affected soils. These endmembers were related to surface expression of various categories of salt-affected soils in the area. The endmembers were selected by performing minimum noise fraction (MNF) transformation and pixel purity index (PPI) on Hyperion (EO-1) data with reference to high resolution LISS IV data and field data. The results showed that various severity classes of salt-affected soils could be reliably mapped using linear spectral unmixing analysis. A low RMSE value (0.0193) over the image was obtained that revealed a good fit of the model in identification and classification of endmembers of various severities of salt affected soils. The overall classification accuracies for slight, moderate and highly salt-affected soils were estimated of 78.57, 79.81 and 84.43% respectively.  相似文献   

5.
A soil and land use survey of Mewat area, Haryana, was carried out using the aerial photographs of 1:50,000. Four major physiographic units namely hills, piedmont plain, intermontante basin and Yamuna alluvial plain were recognised. The land use was studied in relation to the physiographic units. The legend adopted for land use classification has physiography at first level, utility at second level and management and identification at third and fourth levels respectively. Of the total area of 161,103 ha surveyed, 131,637 ha (81.72%) are cultivated. Of this 75,967 ha (47.16%) irrigated and 55,670 ha (34.56%) is unirrigated. Under uncultivated area, barren lands cover 14,224 ha (8.82%), forests occupy 3,463 ha (5.25%), settlements cover 3,300 (2.05%), water bodies occupy 1,312 ha (0.81%) and roads, railway lines, canals and drains constitute 2,167 ha (1.55%).  相似文献   

6.
The extent of salt-affected soils in Punjab based on the 1984 Landsat-MSS data (FCC) has been investigated. The area of salt-affected soils has decreased from 0.699 million ha in 1972 to 0.488 million ha in 1984. The 1972 extent of salt-affected soils is based on the available maps and interpretation of ERTS pictures. The morphological, physical, chemical and minerological characteristics of salt-affected soils in Punjab are described. These soils are charaterised by high pH, ESP and EC but lack columnar or prismatic structure. The highest salt accumulation is observed at the surface and decreases with depth. The only sodium containing silicate mineral identified in these soils is albite. The development of salt-affected soils in Punjab is intimately connected with fluctuation of ground water. These soils have been formed by a combination of topographic, climatic, hydrological and geochemical conditions conducive for the accumulation of brackish waters at or near soil surface.  相似文献   

7.
Remote sensing techniques have been employed to identify and delineate soils in a part of Dibrugarh district of Assam. Landsat-4 MSS data in the form of FCC (4, 5, 7) were interpreted visually for physiographic analysis in conjunction with Survey of India topographic maps. Ground data were translated in terms of soils using composite interpretation map as base. The abstraction level attained was Families of Soil Taxonomy. Four major physiographic units were delineated, viz. active flood plain, recent alluvial plain, gently undulating old alluvial plain and gently sloping to undulating piedmont plain. Dominant soils identified are: coarse loamy Aeric Fluvaquents and fine loamy Typic Udifluvents in active flood plain; fine Typic Haplaquepts and fine loamy Aquic Dystrochrepts in recent alluvial plain; fine loamy Umbric Dystrochrepts and fine Ultic Hapludalfs in old alluvial plain; coarse loamy Typic Udorthents and fine Mollic Hapludalfs in piedmont plain.  相似文献   

8.
Degraded lands in Vidarbha region of Maharashtra were assessed using remote sensing technique. District wise land degradation maps were generated on 1:25,0000 scale through visual interpretation of lRS 1A data supported by limited ground survey. It was observed that degraded lands occupy nearly 2.1 million ha or 21.5 per cent of the total geographical area. The analysis of district wise land degradation statistics indicate that. Yavatmal and Akola districts are graded as having most problematic lands in the region. Nagpur, Amravati, Buldana and Wardha districts are categorised as moderately problematic, whereas Gadchiroli, Chandrapur and Bhandara are districts having least problem of degradation. Among the major land forms, the largest degraded area is associated with undifferentiated plain accounting for 1.1 million ha or 12 per cent of the total area of region, which is mostly under cultivation. It thus follows that problem of degradation is more rampant in agricultural land than forest/waste lands.  相似文献   

9.
Abstract

Spaceborne multispectral measurements have been found very useful tool in delineating soilscape boundaries. The Indian Remote Sensing Satellite (IRS 1B) Linear Imaging Self‐scanning Sensor (LISS‐II) data in the form of false colour composite (FCC) prints at 1:50,000 scale covering part of a complex terrain ‐ hard rock intermixed with the alluvium, were interpreted visually for mapping soil resources. The physiography and lithology of the terrain have been found to have a direct bearing on the occurrence of soils. The image elements which are the reflection of surface drainage, land use/land cover, wetness, etc have been helpful in segregating the broad physiographic units into their components. These sub‐divisions were ultimately found to be associated with the characteristic soils. The methodology and results are discussed in detail.  相似文献   

10.
Visual interpretation of IRS-1A LISS-II (October 1988 & Feb. 1989) FCC (spectral bands 2, 3 & 4) at 1:50,000 scale was carried out for soil resource mapping of Bhiwani district (Haryana State) covering on area of 5099 sq. kim. Based on image characteristics, element analysis (landform, vegetation & erosion) and field traverses, physiography-soil relationship was established. Major physiographic units identified in the area are: Aeolian plain, Fluvio-acolian plain, Transitional plain, Alluvial plain, Hills and Pediments. Area was divided into 34 subunits. Final physiography-soil map on 1:50,000 scale was prepared. Taxonomically, the soils of each unit were classified and are found as: In aeolian plain—Typic Torripsamments/coarse loamy, Typic Camborthios; Fluvio-aeolian plain-Aridic Ustipsamments/coarse loamy/fine loamy Typic/Udic Ustochrepts; Alluvial plain—Typic Ustipsamments/coarse loamy/fine loamy Typic/Udic Ustochrepts; Hills and Pediments—fregmental Lithic Torriorthents/Typic Torripsamments. Interpretation for each subunit was made regarding land suitability for various land utilisation types. It was found that hills and pediments, dunal ridges, dunal complexes and serub-lands are best suitable for forestry and horiculture plantations. Dunal plains and inter-dunal depressions are best suitable for gram/bajra/oilseeds/guar, very gently sloping dunal plain and low lying plain are suitable for wheat/arhar/cotton/sunflower.  相似文献   

11.
In recent years, the use of remotely sensed data and Geographic Information System (GIS) applications has been found increasing in a wide range of resources inventory, mapping, analysis, monitoring and environmental management. Remote sensing data provides an opportunity for better observation and systematic analysis of terrain conditions following the synoptic and multi-spectral coverage. In the present study, the geomorphological analysis reveals that various denudational and depositional landforms have been analysed and mapped. The soil depth ranges from extremely shallow in isolated mounds to very deep in the pediplains. Based on the slope gradient, morphometry, soil depth, vegetation cover and image characteristics of standard FCC imagery of IRS-1D LISS-III data, four categories of eroded lands i.e., very severe, severe, moderate and nil to slight have been identified and mapped. The integrated analysis of slope, geomorphology and degraded lands layers in GIS revealed that the pediplains, rolling plains and subdued plateau are associated with very severe land degradation and accounts for 6.05%, 3.85% and 3.47% of total area respectively. The analysis of percentage of degraded lands at geomorphic sub unit level indicates that severe land degradation process is dominant in the dissected ridges, isolated mounds, escarpments and plateau spurs. The remote sensing data and GIS based detailed geomorphological and degraded lands analysis ensure better understanding of landform-eroded lands relationship and distribution to assess the status of land degradation at micro geomorphic unit for reclamation, geo-environmental planning and management. Similar study also helps in the areas of natural resource management, environmental planning and management, watershed management and hazards monitoring and mitigation.  相似文献   

12.
The soil and landuse surveys have been conducted in Patna area, Bihar, using aerial photos of 1:25,000 scale. Three major systems, Ganges Gandak and interfluvial plain, have been identified in the area. These were further sub-divided into levees plains and channels etc. The soils were classified according to Soil axonomy. The major land use of the area is cultivation (62.2%) (Upland, lowland and wet land crops) plantation (1.8%) habitation (16.0%), water bodies (8.8%), barren lands (9.4%) and miscellaneous (1.8%). The soils of the area have been evaluated for different land utilization types-upland crops, lowland crops, and habitation. For paddy 75.:%, upland crops 8.2% and for habitation 57%, area was found suitable.  相似文献   

13.
Soil is an integral part of ecosystem nurturing the biological system. Sustainable management of soil resources based on the consideration of constraints is the key to check land degradation and maintain productivity of biological system. To meet the objective remote sensing and GIS technology has been employed for identification of soil constraints in resource potential Bhilwara district. IRS LISS-III FCC images were interpreted for soil constraints using physiography soil approach, verified through field checking and laboratory analysis. On IRS LISS-III FCC images the salt affected soils of Kotri and Taswaria appeared in bright white to light grey tone, smooth texture with white mottles. These were also verified during ground truth and soil analysis for salinity (EC 2.90–3.32 dS m−1) and sodicity (pH 9.50–9.86 and ESP 17.60–19.05). Similarly on the LISS III FCC, constraints due to water erosion near Bir, Sareri and Vijaypura soil series were apparent in light grey to whitish tone, intercepted by medium grey streaks indicating streams and exposed sub-soil. The constraints due to shallow depth associated with rock out crops and hilly areas of Balda and Delwara series appeared in greenish grey tone and coarse texture. There was close relationship between image characteristics, field observation and analytical data.  相似文献   

14.
The study area is characterized by low and fluctuating rainfall pattern, thin soil cover, predominantly rain-fed farming with low productivity coupled with intensive mining activities, urbanization, deforestation, wastelands and unwise utilization of natural resources causing human induced environmental degradation and ecological imbalances, that warrant sustainable development and optimum management of land resources. Spatial information related to existing geology, land use/land cover, physiography, slope and soils has been derived through remote sensing, collateral data and field survey and used as inputs in a widely used erosion model (Universal Soil Loss Equation) in India to compute soil loss (t/ha/yr) in GIS. The study area has been delineated into very slight (<5 t/ha/yr), slight (5–10 t/ha/yr), moderate (10–15 t/ha/yr), moderately severe (15–20 t/ha/yr), severe (20–40 t/ha/yr) and very severe (>40 t/ha/yr) soil erosion classes. The study indicate that 45.4 thousand ha. (13.7% of TGA) is under moderate, moderately severe, severe and very severe soil erosion categories. The physiographic unit wise analysis of soil loss in different landscapes have indicated the sensitive areas, that has helped to prioritize development and management plans for soil and water conservation measures and suitable interventions like afforestation, agro-forestry, agri-horticulture, silvipasture systems which will result in the improvement of productivity of these lands, protect the environment from further degradation and for the ecological sustenance.  相似文献   

15.
Visual interpretation of IRS ID LISS-III fused with PAN data (1:12,500 scale) ofPatloinala micro-watershed of Puruliya district, West Bengal was carried out for delineating the physiographic units based on the variations in image characteristics. The major physiographic units identified were upland(Tanr), medium land(Baid), and low land(Bahal andKanali). The satellite remote sensing data coupled with ground truth were translated in terms of soils using composite interpretation map as base. The abstraction level attained was phases of soil series based on Soil Taxonomy. On the basis of physiographic variation and soil or soil site characteristics such as texture, depth, slope, erosion etc. the problem areas were identified and land use plan has been suggested for the overall development of the micro-watershed.  相似文献   

16.
Soil mapping on the scale 1:50,000 was conducted in Tehri-Garhwal district of Uttar Pradesh using Survey of India Topographic maps and utilising aerial photographs of the area which were interpreted for demarcation of physiographic units, vegetation, drainage and other features relevant to soil development. Resulting soil map and soils and land use information have been helpful in presenting an optimum land use and management plan in the area keeping in view of the soils characteristics, terrain features and existing land use, Soils and physiographic interpretation in the area have highlighted significant soil-landscape relationships relevant to land utilization. The other factors responsible for soil formation which could be significant in the area i.e. climate and parent material were also taken into consideration apart from topography. Of all these factors topography was revealed to be the predominant factor governing soil formation in the area. Soil units mapped coincided with the physiographic units demarcated through aerial photo-interpretation. The area of the district could be divided into three climatic zones viz. (i) Cool temperate, (ii) Sub-tropical warm temperate and (iii) tropical following Kaushic (1962). It was noticed that in each climatic zone with the climate being almost uniform within the zone, irrespe tlve of variations in the parent material, soil development was markedly affected by topographly, variations which led to differences in soil characteristics particulary soil texture and amount of coarse fragments. In about 70 percent of the area of the district where slopes are steep to very steep, topography was revealed to be the dominant factor determining characteristic soil development. In the remaining part where slopes are moderate to gentle, parent material is the dominant factor followed by topography.  相似文献   

17.
A confirmatory study of soil physiographic units identified through aerial photo interpretation technique, in Yamuna alluvial plain, Haryana is presented here. The area under study is part of Yamuna alluvial plain in Sonepat district, Haryana. Shanwal and Malik (1980) studied and mapped this area (semi-detailed) on 1:25,000 scale through areial photo interpretation technique. The soil profile samples of major soil physiographic units of the area were fractionated into sand, silt and clay. Detail mineralagical studies were carried out through electron microscopic and X-ray diffractometer studies in order to know their nature and origin of the parent material. X-ray diffraction data shows that mineralogy of different fractions (Sand, silt and clay) of soils samples, of different physiographic units were similar except Lavee. In this area mica is the dominant day mineral in the soils followed by Kaolinite, chlorite, vermiculite and smectite in decreasing order of their abundances. The occurance of fibrous minerals in coarse clay and silt fraction of soil samples of Lavee physiographic unit is the interesting feature of this area. The presence of fibrous minerals indicates that this overlain material designated as natural Levee in this area is not the alluvium brought down by the river Yamuna but is aeolian material flown from adjoining deseret of Rajasthan and deposited as stabilized sand dune. The fibrous minerals have been reported earlier in the desert of Rajasthan.  相似文献   

18.
Slums are universal and a ubiquitous part of the urban landscape. Dharavi, the biggest slum in the whole of Greater Bombay, encompasses 4.0 sq.km. of reclaimed land with 3.50 lakh inhabitants and 75,000 hutments. Majority of the slums of Indian cities, being structurally small with high density of dwellings and uniform building material, seldom give subtle ’spectral signature’ on the satellite imagery. Here, an attempt has been made to map by visual techniques the land use of Dharavi and environs of 20 sq.km area, using optically enhanced Landsat (TM) FCC of January, 1986, on 1:25,000 sale, The study has clearly brought out the land use details, the areas undergoing reclamation, and those susceptible to hazards like floods and marine erosion. A few alternate sites, based on geomorphic attributes are suggested for resettlement of Dharavislum and their areas are also quantified. The results of the present work is a part of the project study completed for a larger area covering 150sq. kms.  相似文献   

19.
Salt affected soils are characterized by variable distribution and dynamic nature. Based on Landsat data from 1986/1987 supported by ground truth, salt affected soil maps were prepared at 1:250,000 scale for 14 states and a union territory (UT). A map legend was evolved that described the nature, degree and extent of salt affected soils suitable for varied physiographic and agroclimatic regions of the country. Fifteen categories of salt affected soil were identified for the entire country. These were merged to two categories – saline and sodic – for management purposes. Digitized maps were developed in a geographical information system (GIS) depicting salt affected areas of the country. An area of 6.73 million ha of salt affected soils was estimated for the entire country. State-wise estimates showed that this extensive area is distributed over the Gangetic plain of Uttar Pradesh; the arid and semiarid regions of Gujarat and the peninsular plains of Maharashtra state. A significant area is also located in the coastal region covering seven states. The salt affected soils are primarily saline in deltaic (C), coastal (D) and mud flats/mangrove swamps (G) and sodic in alluvial (A), aeofluvial/aeolian/arid (B) and peninsular (F) plains. The distribution of salt affected soils in agroclimatic zones (ACZs) showed occurrence in Gujarat plain, East Coast plains, Upper-Gangetic plain, Trans-Gangetic plain, Central Plateau, Lower-Gangetic plain and Southern Plateau of the country.  相似文献   

20.
Soil survey of Hissar district (Haryana) covering total area of 6,331 sq. kms. was carried out using the aerial photographs of 1 : 25,000 scale. A detailed physiographic legend was prepared and boundaries were confirmed in relation to soil. Soil-landscape relationship was established during the course of study. Four major physiographic units were identified in the area : i. e. i) Aeolian plain, ii) Alluvial plain, iii) Drishdawati flood plain, iv) Ghaggar flood plain. Each of the major unit was sub-divided on the basis of photo elements, tone, texture, erosion, parcelling etc. The soils of the sand dunes/ Bars are classified as Typic Torripsamments/Ustipsamments; plain-Typic, Camborthids/Calciorthids/Ustrochrepts; basins-Aquic Ustochrepts and salt affected plain-Aquic Natrustalfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号