首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
2.
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41 − 16204.8/T − 12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

3.
The solvent-extractable organic compounds of atmospheric PM10 samples, collected over two years beginning in 2003 at urban and suburban sites of Beijing, were characterized using gas chromatography–mass spectrometry (GC–MS). The elemental carbon (EC) contents were determined and ranged from 4.3 to 42 μg m− 3. Organic compounds in total extracts were identified and included unresolved complex mixture (UCM) and series of n-alkanes, n-alkanols, n-alkanoic acids, polycyclic aromatic hydrocarbons (PAHs); saccharides, alkanedioic acids, steroids, and other biomarkers and source tracers. The seasonal variations of their relative abundances are discussed. The abundance order for the major molecular classes in the particulate organic matter (POM) was the following: UCM > saccharides > n-alkanoic acids >n-alkanes > n-alkanols > PAHs > hydroxy-PAHs > other biomarker tracers. Based on the genetic significance of the molecular tracers, the dominant sources of POM are proposed for the two sampling sites. The emissions from fossil fuel use (both coal and petroleum products), biomass combustion, other pyrolysis sources, higher plant wax, and secondary products contribute > 98.0% of the POM mass. The fossil fuel use (average = 65% of POM) is the largest contributor and derives mainly from vehicular traffic.  相似文献   

4.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

5.
Vapor phase concentrations of acetone, acetaldehyde and acetonitrile over their aqueous solutions were measured to determine Henry's law partition coefficients for these compounds in the temperature range 5–40 °C. The results are for acetone: ln(H 1/atm)=–(5286±100)T+(18.4±0.3); acetaldehyde: ln(H 1/atm)=–(5671±22)/T+(20.4±0.1); and acetonitrile: ln(H 1/atm)=–(4106±101)/T+(13.8±0.3). Artificial seawater of 3.5% salinity in place of deiionized water raisesH 1 by about 15%. A similar technique has been used to measure the equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite in aqueous solution. The results are ln(K 1/M –1)=(4972±318)/T–(11.2±1.1) and ln(K 1/M –1)=(6240±427)/T–(8.1±1.3), respectively. The results are compared and partly combined with other data in the literature to provide an average representation.  相似文献   

6.
The remarkable wide range spatial scaling of TRMM precipitation   总被引:1,自引:0,他引:1  
The advent of space borne precipitation radar has opened up the possibility of studying the variability of global precipitation over huge ranges of scale while avoiding many of the calibration and sparse network problems which plague ground based rain gage and radar networks. We studied 1176 consecutive orbits of attenuation-corrected near surface reflectivity measurements from the TRMM satellite PR instrument. We find that for well-measured statistical moments (orders 0 < < 2) corresponding to radar reflectivities with dBZ < 57 and probabilities > 10− 6, that the residuals with respect to a pure scaling (power law) variability are remarkably low: ± 6.4% over the range 20,000 km down to 4.3 km. We argue that higher order moments are biased due to inadequately corrected attenuation effects. When a stochastic three — parameter universal multifractal cascade model is used to model both the reflectivity and the minimum detectable signal of the radar (which was about twice the mean), we find that we can explain the same statistics to within ± 4.6% over the same range. The effective outer scale of the variability was found to be 32,000 ± 2000 km. The fact that this is somewhat larger than the planetary scale (20,000 km) is a consequence of the residual variability of precipitation at the planetary scales. With the help of numerical simulations we were able to estimate the three fundamental parameters as α ≈ 1.5, C1 = 0.63 ± 0.02 and H = 0.00 ± 0.01 (the multifractal index, the codimension of the mean and the nonconservation parameter respectively). There was no error estimate on α since although α = 1.5 was roughly the optimum value, this conclusion depended on assumptions about the instrument at both low and high reflectivities. The value H = 0 means that the reflectivity can be modeled as a pure multiplicative process, i.e. that the reflectivity is conserved from scale to scale. We show that by extending the model down to the inner “relaxation scale” where the turbulence and rain decouple (in light rain, typically about 40 cm), that even without an explicit threshold, the model gives quite reasonable predictions about the frequency of occurrence of perceptible precipitation rates.While our basic findings (the scaling, outer scale) are almost exactly as predicted twenty years ago on the basis on ground based radar and the theory of anisotropic (stratified) cascades, they are incompatible with classical turbulence approaches which require at least two isotropic turbulence regimes separated by a meso-scale “gap”. They are also incompatible with classical meteorological phenomenology which identifies morphology with mechanism and breaks up the observed range 4 km–20 000 km into several subranges each dominated by different mechanisms. Finally, since the model specifies the variability over huge ranges, it shows promise for resolving long standing problems in rain measurement from both (typically sparse) rain gage networks and radars.  相似文献   

7.
Ultraviolet absorption cross-sections of trifluoro-bromo-methane (CF3Br-Halon 1301), difluoro-dibromo-methane (CF2Br2-Halon 1202) and of difluoro-bromo-chloro-methane (CF2BrCl-Halon 1211) are measured in the wavelength interval 172–304 nm for temperatures ranging from 210 to 295 K with uncertainties of between 2 and 4%. They are compared with previous measurements available at room temperature. Temperature effects are discussed and parametrical formulae are proposed to compute the absorption cross-sections for wavelengths and temperatures useful in atmospheric modelling calculations. Photodissociation coefficients are presented and their temperature dependence is discussed.  相似文献   

8.
Aerosol optical properties over Solar Village, Saudi Arabia have been studied using ground-based remote sensing observations through the Aerosol Robotic Network (AERONET). Our analysis covered 8 recorded years of aerosol measurements, starting from February 1999 through January 2007. The seasonal mean values of aerosol optical thickness (AOT), the Ångström wavelength exponent α and the surface wind speed (V), exhibit a one year cyclical pattern. Seasonal variations are clearly found in the shape and magnitude of the volume size distribution (VSD) of the coarse size mode due to dust emission. The Spring is characterized by dusty aerosols as the modal value of the exponent α was low ~ 0.25 while that of AOT was high ~ 0.3. The modal value of wind speed was the highest ~ 3.6 m/s in spring. The increase in wind speed is responsible for increasing the concentration of dust particles during Spring. Spring of 2003 has the highest mean values of AOT, V and VSD and the lowest mean value for the exponent α. The seasonal mean values of the exponent α are anticorrelated with those of the wind speed (r = − 0.63). The annual mean values of the exponent α are well correlated (r = 0.77) with those of the difference between the maximum and minimum values of temperature ΔT. They are anticorrelated (r = − 0.74) with the annual mean values of the relative humidity. Large aerosol particles and high relative humidity increase the radiative forcing. This results in reduction of the values of the temperature difference ΔT.  相似文献   

9.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

10.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

11.
Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.  相似文献   

12.
The following temperature-dependent rate coefficients (k/cm3 molecule–1 s–1) of the reactions of hydroxyl radicals with aliphatic ethers have been determined over the temperature range 247–373 K by a competitive flow technique: diethyl ether,k OH=5.2×10–12 exp[(262±150)/T]; methyln-butyl ether,k OH=5.4×10–12 exp[(309±150)/T]; ethyln-butyl ether,k OH=7.3×10–12 exp[(335±150)/T]; di-n-butyl ether,k OH=5.5×10–12 exp[(502±150)/T] and di-n-pentyl ether,k OH=8.5×10–12 exp[(417±150)/T]. The data have been measured relative to the rate coefficientk(OH + 2,3-dimethylbutane)=6.2×10–12 cm3 molecule–1 s–1 independent of temperature.Previous discrepancies in the room-temperature rate coefficients for the OH reactions with ethyln-butyl ether and di-n-butyl ether, obtained in the flow and static experiments of Bennett and Kerr (J. Atmos. Chem. 8, 87–94, 1989;10, 29–38, 1990) compared with those of Wallingtonet al. (Int. J. Chem. Kinet. 20, 541–547, 1988;21, 993–1001, 1989) and of Nelsonet al. (Int. J. Chem. Kinet. 22, 1111–1126, 1990) have been resolved. The results are considered in relation to the available literature data and evaluated rate expressions are deduced where possible. The data are also discussed in terms of structure-activity relationships.  相似文献   

13.
Although the bulk aerodynamic transfer coefficients for sensible (C H ) and latent (C E ) heat over snow and sea ice surfaces are necessary for accurately modeling the surface energy budget, they have been measured rarely. This paper, therefore, presents a theoretical model that predicts neutral-stability values of C H and C E as functions of the wind speed and a surface roughness parameter. The crux of the model is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aerodynamically smooth and rough surfaces on the basis of a surface-renewal model in which turbulent eddies continually scour the surface, transferring scalar contaminants across the interface by molecular diffusion. Matching these interfacial sublayer profiles with the semi-logarithmic inertial sublayer profiles yields the roughness lengths for temperature and water vapor. When coupled with a model for the drag coefficient over snow and sea ice based on actual measurements, these roughness lengths lead to the transfer coefficients. C E is always a few percent larger than CH. Both decrease monotonically with increasing wind speed for speeds above 1 m s–1, and both increase at all wind speeds as the surface gets rougher. Both, nevertheless, are almost always between 1.0 × 10–3 and 1.5 × 10–3.  相似文献   

14.
Ion mobility spectrometry offers a robust and effective technique to study ion clusters in ambient conditions. Here, we have experimentally studied the influence of temperature on the positive ion cluster formation of 2-propanol vapor in air, along with parallel measurements for n-butyl acetate vapor in air. For both of these low proton affinity compounds in the ppm concentration range, temperatures below 0 °C tend to favor formation of dimers and trimers. The measurements indicate that approximate estimations for the fractions of these n-mers (n > 1) in the ion spectra, can be obtained by classical theory for ion induced nucleation. Presence of natural background vapors however slightly blurs the data, especially for the fraction of monomers, so that accurate prediction of the fractions of n-mers in the spectra would require more accurate information on the gas composition. The findings concerning thermal behavior of ions help to understand better ion phenomena also in field conditions.  相似文献   

15.
The absorption cross-sections of HCFC-123 (CF3–CHCl2), HCFC-141b (CH3–CFCl2) and HCFC-142b (CH3–CF2Cl) are measured between 170 and 250 nm for temperatures ranging from 295 to 210 K with uncertainties between 2 and 4%. They are compared with other available determinations. Temperature effects are discussed and parametrical formulae are proposed to compute the absorption cross-section for wavelengths and temperatures useful in atmospheric modelling calculations. Photodissociation coefficients are presented and their temperature-dependence is discussed.  相似文献   

16.
Measurements of the temperature and zonal velocity fields which develop in a rotating annulus of fluid with an upper surface, differentially heated from the inner to outer cylinder, are described for the lower symmetric regime (small radial temperature differences). The temperature field is essentially conductive for moderate to large rotation rates, Ω (>1.0 sec−1). The zonal velocity field is poorly approximated by the thermal wind equation.Measurements of the transition to waves from the lower symmetric regime at very large rotation rates are presented for positive and negative radial temperature differences. They suggest that the centrifugal buoyancy force and the free surface curvature may be important factors for the lower symmetric-wave transition at large Ω. By varying the stratification of the fluid over a range of 103 independently of the radial temperature difference, ΔrwT, it is conclusively shown that several theories are correct in predicting that the lower symmetric transition is independent of the stratification at small ΔrwT > 0 for large enough Ω.  相似文献   

17.
A simple and inexpensive procedure is presented for the measurement of gaseous accommodation coefficients upon liquid or solid surfaces. The gas of interest is passed in laminar flow through an annular reactor and the profile of deposition is subsequently determined. The Cooney-Kim-Davies theoretical treatment of deposition in cylindrical systems is adapted to describe uptake on the walls of the annular reactor as a function of accommodation coefficient and diffusion coefficient. The accommodation coefficient () of ammonia on oxalic acid is determined in both cylindrical and annular systems and good agreement is found. Uptake of nitrogen dioxide on wet alkaline surfaces yields a value for of 2.5×10–4, and on solely wet surfaces a value of 8.7×10–5. Nitric and nitrous acids deposit to aqueous sodium carbonate/glycerol surfaces with values of of 1.5 × 10–2 and 4.3×10–3, respectively.  相似文献   

18.
The measurements of the photosynthetic photon flux density (Qp) and other solar components have been in Beijing for 2-year period. The Qp, broadband solar radiation (Rs) and the PAR fraction (Qp / Rs) showed similar seasonal features that peaked in value during the Summer and reached their lowest value during the Winter. The PAR fraction ranged from 1.68 E M J− 1 (Winter) to 1.98 E M J− 1 (Summer) with an annual mean value of 1.83 E M J− 1. The analysis of the hourly values also revealed a diurnal pattern, with higher values of Qp and Rs being observed around noon. The PAR fraction increased from 1.78 to 1.89 μE J− 1 (hourly values), as the sky conditions changed from clear to cloudy. The monthly mean hourly PAR fraction also revealed a diurnal variation, however, with lower values being observed around noon during most months. In November, the diurnal variations showed an opposite feature in comparison with other months. This is mainly attributed to the diurnal variations in the water vapor concentration.Two models were developed to estimate Qp from Rs. The models consisted of atmospheric parameters that were found to cause substantial changes to the PAR fraction, such as sky clearness, brightness and path length. The estimated Qp obtained via different equations was much closer to the observed values, with relative errors below 20% in Beijing. The Qp and Rs data collected at three stations with featuring different climate types from within Beijing were used for verifying the transferability of the models. The correlation coefficients between the measured and estimated Qp values decreased at these stations, and the relative error increased. This indicates that the estimation models need to be modified accordingly for the local climatic conditions.  相似文献   

19.
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003–May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.  相似文献   

20.
Heat transfer was studied between intact leaves of various sizes and shapes in vivo under free and forced air conditions. Use of a wind tunnel and a microwave transmitter to heat the leaves facilitated measurements of convective, along with radiative and evaporative, heat losses from plant leaves. Knowledge of input energy, analysis of cooling curves, and established formulae, respectively, formed the basis of the steady-state, unsteady-state, and analytical methods for the determination of heat transfer coefficients.Typical values of steady-state free convection coefficients for Peperomia obtusifolia varied from 1.5 × 10–4 to 1.9 × 10–4 cal cm–2 s–1 C–1 as the temperature difference was increased from 5.9 to 9.6°C, whereas the forced convection coefficient was found to be 4.2 × 10–4 cal cm–2 s–1 C–1 at 122 cm s–1 wind velocity. For egg-plant, this value was about 9 × 10–4 cal cm–2 s–1 C–1 at 488 cm s–1 wind velocity. Convection coefficients as determined under steady-state conditions are compared with those of the unsteady-state and with analytical values for a single leaf and leaves of three different plants. In general, experimental values were found to be higher than the analytical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号