首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raritan Bay, located between the states of New York and New Jersey, has a long history of cultural eutrophication and associated harmful algal blooms (HABs). Despite striking chemical and biological alterations occurring in Raritan Bay, publications in the early 1960s were the last to report consecutive measurements of both water quality parameters and plankton species composition in this system. The objectives of this study were to characterize water quality trends and plankton composition in a eutrophic estuary, compare current environmental conditions to those documented in Raritan Bay 50 years ago (i.e., at the same six sampling sites), and to further clarify the relationship among nutrients, secondary consumers, and algal bloom generation in this system using ordination techniques. This study (monthly data collected from April 2010–October 2012) indicates that Raritan Bay continues to exhibit numerous symptoms of eutrophication, including high algal biomass, high turbidity, violations of the dissolved oxygen standard to protect fish health, and blooms of potentially harmful phytoplankton species. Altered spatial and temporal patterns for nitrate and soluble reactive phosphorus (SRP) over the past 50 years may suggest new, changing, or expanding sources of nutrients. A total of 14 HAB species have been identified, including Heterosigma akashiwo, which formed a bloom in the upper Raritan Bay during summer 2012 in association with hypoxic conditions. Multivariate analyses indicate that abundance of this species is positively associated with high temperature, salinity, nitrate, and SRP and negatively associated with spring river discharge rates and total zooplankton abundance in Raritan Bay.  相似文献   

2.
During the last several decades, harmful algal bloom (HAB) events have been observed in more locations than ever before throughout the United States. Scientists have identified a larger number of algal species involved in HABs, more toxins have been uncovered, and more fisheries resources have been affected. Whether this apparent increase in HAB events is a real phenomenon or is the result of increased sampling and monitoring is a topic of intense discussions within the scientific community. We also have an inchoate understanding of the reasons for the apparent increase, particularly concerning the role of anthropogenic nutrient loadings as a causal factor. Whatever the reasons, virtually all coastal regions of the U.S. are now regarded as potentially subject to a wide variety and increased frequency of HABs. It is important to begin to understand the scale of the economic costs to society of such natural hazards. It is a common, but not yet widespread, practice for resource managers and scientists in many localities to develop rough estimates of the economic effects of HAB events in terms of lost sales in the relevant product or factor markets, expenditures for medical treatments, environmental monitoring and management budgets, or other types of costs. These estimates may be invoked in policy debates, often without concern about how they were developed. Although such estimates are not necessarily good measures of the true costs of HABs to society, they may help to measure the scale of losses and be suggestive of their distribution across political jurisdictions or industry sectors. With adequate interpretation, our thinking about appropriate policy responses may be guided by these estimates. Here we compile disparate estimates of the economic effects of HABs for events in the U.S. where such effects were measured during 1987–1992. We consider effects of four basic types: public health, commercial fisheries, recreation and tourism, and monitoring and management. We discuss many of the issues surrounding the nature of these estimates, their relevance as measures of the social costs of natural hazards, and their potential for comparability and aggregation into a national estimate.  相似文献   

3.
Bechard  Andrew 《Natural Hazards》2020,104(1):593-609
Natural Hazards - Harmful algal blooms (HABs) can be a natural hazard unlike anything else. Whereas a hurricane or tornado has a sudden and devastating impact to an area, an HAB can slowly impact...  相似文献   

4.
Cryptic Blooms: Are Thin Layers the Missing Connection?   总被引:1,自引:0,他引:1  
Harmful algal blooms (HABs) are common in Monterey Bay, CA, and have resulted in repeated closures of shellfish fisheries and the poisoning and death of marine mammals. In the majority of instances, HAB events in this region are first detected by the presence of sick or dying animals. The phrase “cryptic blooms” was adopted to denote the appearance of poisoning at higher trophic levels with no prior evidence of a large phytoplankton bloom. We hypothesize that the onset of many HAB events goes undetected because the bloom is initially concentrated in discrete thin subsurface layers in the water column that are easily missed by conventional sampling and monitoring methods. In this paper, we report on the detection and monitoring of a subsurface layer of phytoplankton in northern Monterey Bay, CA, using a high-resolution, autonomous profiler. This ‘thin layer,’ which measured from 10 cm to 3 m in thickness (85% < 2 m; 54% < 1 m), persisted over a 7-day period near the base of the pycnocline. The phytoplankton assemblage in the layer was primarily composed of a multi-species assemblage of Pseudo-nitzschia including the toxin-producing species Pseudo-nitzschia australis. Concentrations of toxic phytoplankton (P. australis), cyanobacteria, and bacteria in the layer were significantly higher than outside the layer (P < 0.05). Counts of total Pseudo-nitzschia spp. showed similar levels of enrichment in the layer compared to outside the layer. Our findings indicate that, when monitoring for HABs, it is critical to sample at scales appropriate to resolve thin layers. Thin layers have been identified as a common recurrent feature in a variety of coastal systems, suggesting that the use of autonomous high-resolution vertical profilers coupled with targeted sampling, could allow more timely detection of HABs in many coastal environments.  相似文献   

5.
介绍国家重点基础研究发展计划项目(“973”项目)“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”的研究背景和主要研究内容,即以我国赤潮高发区东海作为主要研究海域,重点开展重要有害赤潮种的生物学特征及生态适应策略研究;近海赤潮高发区有害赤潮与富营养化的关系研究;近海赤潮高发区有害赤潮生消关键物理过程、数值模拟与预测研究;有害赤潮的危害机理及防治机理研究等。简要报道了项目通过现场综合航次获得的东海大规模赤潮发生前后水文、化学和生物学等诸多要素的变化特征,以及结合实验室模拟研究,在探索重要赤潮生物种群变化的动力学过程及其调控机理等方面取得的进展。另外,对项目的研究前景进行了展望。  相似文献   

6.
Naturally occurring isotopes of radon (222Rn) and radium isotopes (223,224,226,228Ra) were used as tracers to assess submarine groundwater discharge (SGD) into Little Lagoon, AL (USA), a site of recurring harmful algal blooms (HABs). The radium isotopic data suggests that there are two groundwater sources of these tracers to the lagoon, a shallow (A1) and deeper (A2) aquifer. We estimated the fraction of each source via a three-end-member mixing model consisting of Gulf of Mexico seawater, shallow and deep groundwater. The estimated lagoonwide SGD rates based on a radium mass balance and the mixing model were 1.22?±?0.53 and 1.59?±?0.20 m3 s-1 for the shallow and deep groundwater discharges, respectively. To investigate temporal variations in SGD, we performed several radon surveys from 2010 through 2012, a period of generally declining groundwater levels due to a drought in the southeastern USA. The total SGD rates based on a radon mass balance approach were found to vary from 0.60 to 2.87 m3 s-1. We observed well-defined relationships between nutrients and chlorophyll-a in lagoon waters during a period when there was an intense diatom bloom in April 2010 and when no bloom existed in March 2011. A good correlation was also found between radium (groundwater-derived) and nutrients during the April 2010 period, while there was no clear relationship between the same parameters in March 2011. Based on multivariate analysis of chemical and environmental factors, we suggest that nutrient-rich inputs during high SGD may be a significant driver of algal blooms, but during low SGD periods, multiple drivers are responsible for the occurrence of algal blooms.  相似文献   

7.
A number of local, regional, state, and federal programs are in place that strive to protect and restore coastal waters and habitats, and which specifically address eutrophication and nutrient over-enrichment. There are, however, no easily implemented and reliable methods or sources of data and information for citizens, coastal managers, elected officials, and agency staff who are responsible for managing a coastal area to determine sources of nutrients and potential impacts to coastal waters. Coordination among federal and local agencies remains inadequate. In the few examples of successful coastal nutrient management programs, effective nutrient management strategies are often partnerships of national, regional, and local efforts. The recent National Research Council (2000) examination of issues and management options calls for development of a National Coastal Nutrient Management Strategy, coordinated between national, state and local programs, academia, and the private sector. The proposed National Coastal Nutrient Management Strategy includes recommendations for local programs to consider in developing an effective nutrient management strategy, such as setting goals for restoration, determining nutrient reductions needed to meet goals, and monitoring results. The proposed strategy also identifies priority actions which federal programs should consider, including identifying gaps and overlaps in existing and proposed national programs for all aspects of nutrient over-enrichment; increasing accessibility to data, information and expertise on nutrient over-enrichment causes, effects, and management options; and setting clear guidelines for nutrient loads. A nationally consistent monitoring program and targeted research, specifically for atmospheric deposition, seasonal variability of nitrogen and phosphorus enrichment effects, the role of specific nutrients in the occurrence of harmful algal blooms, and economic impacts of nutrient over-enrichment were also identified as priority needs.  相似文献   

8.
Numerous phytoplankton-oriented ecological studies have been conducted since 1965 in the extensive North Carolina estuarine system. Throughout a range of geomorphological estuarine types, a basic underlying pattern of phytoplankton productivity and abundance following water temperature seasonal fluctuations was observed. Overlying this solar-driven pattern was a secondary forcing mechanism consisting of a complex interaction between meteorology and hydrology, resulting in periodic winter or early spring algal blooms and productivity pulses in the lower riverine estuaries. Wet winters caused abundant nitrate to reach the lower estuaries and stimulate the blooms, whereas dry winters resulted in low winter phytoplankton abundance and primary production. Dinoflagellates (Heterocapsa triquetra, Prorocentrum minimum, Gymnodinium spp.) and various cryptomonads dominated these cool-weather estuarine blooms. Sounds were less productive than the riverine estuaries, and were dominated by diatoms such asSkeletonema costatum, Thalassiosira spp.,Melosira spp., andNitzschia spp., as were the most saline portions of riverine estuaries. Nutrient-limitation studies found that nitrogen was the principal limiting nutrient in these estuarine systems over a range of trophic states, with phosphorus occasionally co-limiting. Freshwater and oligohaline portions of large coastal plain rivers were often subject to summer blue-green algal blooms. Formation of these blooms on a year-to-year basis was also determined by meteorology and hydrology: wet winters or springs and consequent nutrient loading, coupled with low summer flow conditions and regeneration of nutrients from the sediments. Dry winters or springs resulted in less available nutrients for subsequent summer regeneration, and high flow conditions in summer flushed out the blooms. In recent years, there has been a dramatic increase in reported fish kills attributed to toxic dinoflagellate blooms, particularly in nutrient-enriched estuarine areas. This issue has become a major coastal ecological and economic concern.  相似文献   

9.
Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.  相似文献   

10.
环境中放线菌及其抑藻活性物质研究的若干进展   总被引:1,自引:0,他引:1  
赤潮是一种严重的全球性海洋自然灾害,近年来赤潮发生次数增多,发生区域扩大,危害加剧.放线菌是产生生物活性物质相对较多的一类微生物,溶藻放线菌的发现及其代谢产物多样性,在赤潮生消过程中起着越来越重要的作用,为微生物防治赤潮及新型杀藻剂的开发提供了可能.采用溶藻微生物进行赤潮和水华的防治已经被深入认识和充分肯定,成为当前赤潮研究的重点和热点.概述了溶藻放线菌发现及其活性物质分离筛选的研究进展以及赤潮防治的新方法,强调了放线菌及其代谢产物在生态环境中的重要作用,提出了利用放线菌防治赤潮的可能性及有效性,并对溶藻放线菌及其活性物质的研究趋势和应用前景进行了展望.  相似文献   

11.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

12.
We focus on the question of whether high phytoplankton production events observed in a United States Pacific Northwest estuary consist of estuarine species blooms fueled by oceanic nutrient input or reflect offshore oceanic blooms that have advected into the estuary. Our approach is to use certain phytoplankton species as indicators associated with water mass origin, either estuarine or oceanic, to help resolve this question in Willapa Bay, Washington. We used species analysis and primary production data from 10 selected dates in May–September of 1998 and 1999, representing periods of high through low productivity. Out of 108 phytoplankton species identified from Willapa Bay, nine were selected and tested as indicators of oceanic species, six as estuarine, and two as surf zone. Our test results demonstrated the oceanic and estuarine species to be satifactory indicators of source waters. The prevalence of these species indicators in our samples revealed that the highest primary production and the appearance ofPseudo-nitzschia spp. were associated with oceanic intrusions of phytoplankton biomass into Willapa Bay. While the largest blooms were oceanic in origin, numerous medium-sized production events were from either oceanic, surf zone, or estuarine sources, indicating a complex situation.  相似文献   

13.
Harmful algal blooms in the Chesapeake Bay and coastal bays of Maryland, USA, are not a new phenomenon, but may be increasing in frequency and diversity. Outbreaks ofPfiesteria piscicida (Dinophyceae) were observed during 1997 in several Chesapeake Bay tributaries, while in 1998,Pfiesteria-related events were not found but massive blooms ofProrocentrum minimum (Dinophyceae) occurred. In 1999,Aureococcus anophagefferens (Pelagophyceae) developed in the coastal bays in early summer in sufficient densities to cause a brown tide. In 1997, toxicPfiesteria was responsible for fish kills at relatively low cell densities. In 1998 and 1999, the blooms ofP. minimum andA. anophagefferens were not toxic, but reached sufficiently high densities to have ecological consequences. These years differed in the amount and timing of rainfall events and resulting nutrient loading from the largely agricultural watershed. Nutrient loading to the eastern tributaries of Chesapeake Bay has been increasing over the past decade. Much of this nutrient delivery is in organic form. The sites of thePfiesteria outbreaks ranked among those with the highest organic loading of all sites monitored bay-wide. The availability of dissolved organic carbon and phosphorus were also higher at sites experiencingA. anophagefferens blooms than at those without blooms. The ability to supplement photosynthesis with grazing or organic substrates and to use a diversity of organic nutrients may play a role in the development and maintenance of these species. ForP. minimum andA. anophagefferens, urea is used preferentially over nitrate.Pfiesteria is a grazer, but also has the ability to take up nutrients directly. The timing of nutrient delivery may also be of critical importance in determining the success of certain species.  相似文献   

14.
Submarine groundwater discharge (SGD) has become increasingly recognized as an important source of freshwater and nutrients to coastal waters worldwide. Although groundwater nutrients have been found to cause algal blooms in many temperate coastal waters, little is known about the biological response to these nutrients in the tropics. On the leeward coast of Hawaii Island, SGD is the dominant freshwater and nutrient source to coastal waters. Kiholo Bay, HI and Kaloko-Honokohau National Historical Park, HI are two nearshore regions with well-documented SGD with high nutrient concentrations; however, little is known about how biological processes within the surface waters respond to these inputs. This study examined how potential gross primary production (pGPP), respiration (RESP), and potential metabolism (pMET) within surface waters differed inside and outside of groundwater plumes at these two sites and between wet and dry seasons. pGPP and RESP were both significantly higher within groundwater plumes, suggesting that SGD stimulated these biological processes; however, RESP responded to a much greater extent than pGPP, resulting in heterotrophic surface waters. RESP also varied seasonally, with greater rates during the dry season compared to the wet one; pGPP did not vary seasonally. Autotrophic conditions were found within groundwater plumes at Kiholo Bay, while heterotrophic conditions were found within them at Kaloko-Honokohau and were greater during the dry season. Overall, our results show that coastal biological processes respond to SGD and that their responses vary over short spatial and temporal scales.  相似文献   

15.
The global increase of noxious bloom occurrences has increased the need for phytoplankton management schemes. Such schemes require the ability to predict phytoplankton succession. Equilibrium Resource Competition theory, which is popular for predicting succession in lake systems, may not be useful in more dynamic environments, such as estuaries and coastal waters. We developed a mathematical model better suited to nonsteady state conditions. Our model incorporated luxury consumption of nonlimiting nutrients and cell starvation processes into a cell-quota-based nutrient-phytoplankton scheme. Nutrient pools described included nitrogen and phosphorus. Phytoplankton groups characterized in the model were a phosphorus-specialist, a nitrogen-specialist, and an intermediate group. We emphasized competition for nutrients under conditions of continuous and pulsing nutrient supply, as well as different nutrient loading ratios. Our results suggest that delivering nutrients in a pulsing fashion produces dramatic differences in phytoplankton community composition over a given period, that is, reduction of accumulated biomass of slower growing algae. Coastal managers may be able to inhibit initiation of slow-growing noxious blooms in estuaries and coastal waters by pulsing nutrients inputs from point sources, such as sewage treatment plants.  相似文献   

16.
Understanding the short-term response of phytoplankton biomass on environmental variables is needed for issuing early warnings of harmful algal blooms in aquatic ecosystems. Predicting harmful algal blooms are particularly challenging in large shallow lakes due to their complex mixing patterns. This study used a two-dimensional hydrodynamic–phytoplankton model to evaluate the effects of environmental variables on short-term changes in the horizontal distribution of phytoplankton biomass in a large shallow lake, Lake Taihu, China. Two simulations were performed using daily and hourly average wind condition and water temperature data collected in 2009. Other model inputs were identical for these two simulations. The response of phytoplankton to wind conditions, light intensity, water temperature, and total dissolved phosphorus and nitrogen concentrations were examined based on a sensitivity analysis using the hourly data. Hourly simulation achieved a more realistic distribution of phytoplankton biomass than the daily simulation. This finding implies that data with a higher temporal resolution are more useful for short-term prediction of phytoplankton biomass in this lake. Sensitivity analysis indicated that water temperature and light intensity dominate short-term changes in phytoplankton biomass in this lake. Wind conditions also affect phytoplankton biomass distribution by causing advective water movement.  相似文献   

17.
Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before and after the 1950s reveals that there is an increase in the number of bloom occurrences. The reports of algal blooms indicate their predominance along the west coast of India especially the southern part. Majority of the blooms reported along the west coast of India are caused by dinoflagellates, whereas diatom blooms prevail along the east coast. There have been 39 causative species responsible for blooms, of which Noctiluca scintillans and Trichodesmium erythraeum are the most common. Reporting of massive fish mortality in Indian waters has been associated with the blooming of Cochlodinium polykrikoides, Karenia brevis, Karenia mikimotoi, N. scintillans, T. erythraeum, Trichodesmium thiebautii and Chattonella marina. Most of the blooms occurred during withdrawal of the south-west monsoon and pre-monsoon period. In Indian waters, this process is mainly influenced by seasonal upwelling and monsoonal forcing that causes high riverine discharge resulting in nutrient-enriched waters that provides a competitive edge for blooming of phytoplankton species.  相似文献   

18.
Our modeling objective was to better define the relationship between subtropical seagrass and potential water column and sediment stressors (light, organic and particle sedimentation, sediment nutrients, and the porewater sulfide system). The model was developed and optimized for sediments inThalassia testudinum seagrass beds of Lower Laguna Madre, Texas, U.S., and is composed of a plant submodel and a sediment diagenetic submodel. Simulations were developed for a natural stressor (harmful algal bloom,Aureoumbra lagunensis) and an anthropogenic, stressor (dredging event). The observed harmful algal bloom (HAB) was of limited duration and the simulations of that bloom showed no effect of the algal bloom on biomass trends but did suggest that sediment sulfides could inhibit growth if the bloom duration and intensity were greater. To examine this hypothesis we ran a simulation using data collected during a sustained 4-yr bloom in Upper Laguna Madre. Simulations suggested that light attenuation by the HAB could cause a small reduction inT. testudinum biomass, while input of organic matter from the bloom could promote development of a sediment geochemical environment toxic toT. testudinum leading to a major reduction in biomass. A 3-wk dredging event resulted in sedimentation of a layer of rich organic material and reduction of canopy light for a period of months. The simulations suggested that the seagrass could have recovered from the effects of temporary light reduction but residual effects of high sulfides in the sediments would make the region inhospitable for seagrasses for up to 2.5 yr. These modeling exercises illustrate that both natural and anthropogenic stressors can result in seagrass losses by radically altering the sedimentary geochemical environment.  相似文献   

19.
Lake Erie is biologically the most active lake among the Great Lakes of North America, experiencing seasonal harmful algal blooms (HABs). The early detection of HABs in the Western Basin of Lake Erie (WBLE) requires a more efficient and accurate monitoring tool. Remote sensing is an efficient tool with high spatial and temporal coverage that can allow accurate and timely detection of the HABs. The WBLE is heavily influenced by the surrounding terrestrial ecosystem via rivers such as the Sandusky River and the Maumee River. As a result, the optical properties of the WBLE are influenced by multiple color producing agents (CPAs) such as phytoplankton, colored dissolved organic matter (CDOM), organic detritus, and terrigenous inorganic particles. The diversity of the CPAs and their non-linear interactions makes these waters optically complex, and the task of optical remote sensing for retrieving estimates of CPAs more challenging. Chlorophyll a, which is the primary light harvesting pigment in all phytoplankton, is used as a proxy for algal biomass. In this study, several published remote sensing algorithms and band ratio models were applied to the reflectance data from the full resolution MERIS sensor to remotely estimate chlorophyll a concentrations in the WBLE. Efficiency of the sensor and the algorithms performance were tested through a least squares regression and residual analysis. The results indicate that, among the suite of existing bio-optical models, the Simis semi-analytical algorithm provided the best model results for measures of algal biomass in the optically complex WBLE with R 2 of 0.65, RMSE 0.85 μg/l, (n = 71, P < 0.05). The superior results of this model in detecting chlorophyll a are attributed to several factors including optimizing spectral regions that are less sensitive to CDOM and the incorporation of correction factors such as absorption effects due to pure water (a w), backscatter (b b) from suspended matter and interference due to phycocyanin (δ), a major accessory pigment in the WBLE.  相似文献   

20.
Fluvial effects on nutrient and phytoplankton dynamics were evaluated in southern Kaneohe Bay, Oahu, Hawaii. Fluvial inputs occurred as small, steady baseflows interrupted by intense pulses of storm runoff. Baseflow river inputs only affected restricted areas around stream mouths, but the five storm events sampled during this study produced transient runoff plumes of much greater spatial extent. Nutrient loading via runoff generally led to an increase of the phytoplankton biomass and gross primary productivity in southern Kaneohe Bay, but the rapid depletion of nutrients resulted in a decline of the algal populations in the relatively short time of days. Under baseline conditions, water column primary productivity in southern Kaneohe Bay is normally nitrogen limited. Following storm events, the high ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN:DIP, 25–29) fluxes of runoff nutrients drove bay waters towards phosphorus limitation. A depletion of phosphate relative to DIN in surface waters was observed following all storm events. Due to high flushing rates, recovery times of bay waters from storm perturbations ranged from 3 to 8 d and appeared to be correlated with tidal range. Storm inputs have a significant effect on the water column ecosystem and biogeochemistry in southern Kaneohe Bay. The perturbations were only transient events and the system rapidly recovered to prestorm conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号