首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

2.
The determination of the explicit form of vector constants of the motion for a point mass moving in an arbitrary spherically symmetric time-independent potential is reduced to the solution of an ordinary second-order linear differential equation. The vectors to be determined are assumed to be orthogonal to the angular momentum. The differential equation is solved for some particular fields of force and the corresponding vectors are constructed.  相似文献   

3.
In the present work, the two body problem using a potential of a continued fractions procedure is reformulated. The equations of motion for two bodies moving under their mutual gravity is constructed. The integrals of motion, angular momentum integral, center of mass integral, total mechanical energy integral are obtained. New orbit equation is obtained. Some special cases are followed directly. Some graphical illustrations are shown. The only included constant of the continued fraction procedure is adjusted so as to represent the so called J 2 perturbation term of the Earth’s potential.  相似文献   

4.
Regions of possible motions are established for dynamical systems possessing time-independent Hamiltonians or for systems which are reducible to that form by means of integrals of the motion using only extended point transformations. The method is applied to the problem of three bodies in a plane and surfaces of zero velocity are found. The governing parameters are the energy, angular momentum and the masses of the participating bodies. The analytical and geometrical properties of these surfaces provide qualitative results for given constants of the motion.  相似文献   

5.
We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical ‘potential’ function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace–Runge–Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.  相似文献   

7.
We present a new set of variables for the reduction of the planetary n-body problem, associated to the angular momentum integral, which can be of any use for perturbation theory. The construction of these variables is performed in two steps. A first reduction, called partial is based only on the fixed direction of the angular momentum. The reduction can then be completed using the norm of the angular momentum. In fact, the partial reduction presents many advantages. In particular, we keep some symmetries in the equations of motion (d'Alembert relations). Moreover, in the reduced secular system, we can construct a Birkhoff normal form at any order. Finally, the topology of this problem remains the same as for the non-reduced system, contrarily to Jacobi's reduction where a singularity is present for zero inclinations. For three bodies, these reductions can be done in a very simple way in Poincaré's rectangular variables. In the general n-body case, the reduction can be performed up to a fixed degree in eccentricities and inclinations, using computer algebra expansions. As an example, we provide the truncated expressions for the change of variable in the 4-body case, obtained using the computer algebra system TRIP.  相似文献   

8.
It has long been recognized and demonstrated in the astrodynamic literature that three observations of angular position are not always sufficient to determine a preliminary orbit. One reason for this is due to the fact that as the plane of the observer's motion approaches the plane of the orbit of the observed object, the determination of the orbit of the object becomes indeterminant. Merely changing the coordinate system will not eliminate the inherent indeterminacy or singularity. When the observed object is moving in the same plane as the observer, their relative motion is described in two dimensions rather than three. The problem reduces to defining two components of position and two of velocity given only three angular measures and no solution is possible. Although this singularity is a rather old, albeit infrequently arising problem in celestial mechanics, it has received renewed interest due to the advent of satellite observatories that observe other spacecraft. In this new circumstance the plane of the observer's motion is rather frequently near the plane of the object (12% to 35% of the time) and the co-planar singularity becomes a subject that deserves additional attention.It is the purpose of this paper to develop a practical and simple method of orbit determination using four observations. This method also allows one to avoid the problem of multiple orbit-determination solution roots, and provides numerical indices that are useful in assessing the degree of indeterminacy in any given observer/object geometry. This paper does not dwell at length on the theory of orbital singularities, since they have been already treated in celestial mechanics literature. Instead, the emphasis is on the details of a new computational technique, which has been found to be computationally more efficient than previous four-observation methods, and which is unique in being formulated in the geocentric system and involves only one scalar quantity in the correction process.The equations for the new method are developed and a numerical example is presented that demonstrates the efficiency of the method.  相似文献   

9.
The energy and the angular momentum integral of motion for the planar three point problem cannot assure bounded motion. In this paper it is shown that if one of the points is replaced by a homogeneous sphere then bounded motion can be found. The zero velocity surfaces for this modified problem are found and their evolution is described.  相似文献   

10.
We study the transition from regular to chaotic motion in a prolate elliptical galaxy dynamical model with a bulge and a dense nucleus.Our numerical investigation shows that stars with angular momentum Lz less than or equal to a critical value Lzc,moving near the galactic plane,are scattered to higher z,when reaching the central region of the galaxy,thus displaying chaotic motion.An inverse square law relationship was found to exist between the radius of the bulge and the critical value Lzc of the angular m...  相似文献   

11.
We investigate the Cassini's laws which describe the rotational motion in a 1:1 spin-orbit resonance. When this rotational motion follows the conventional Cassini's laws, the figure axis coincides with the angular momentum axis. In this case we underline the differences between the rotational Hamiltonian for a 'slow rotating' body like the Moon and for a 'fast rotating' body like Phobos. Then, we study a more realistic rotational Hamiltonian where the angle J between the figure axis and the angular momentum axis could be different from zero. This Hamiltonian has not been studied before. We have found a new particular solution for this Hamiltonian which could be seen as an extension of the Cassini's laws. In this new solution the angle J is constant, which is not zero, and the precession of the angular momentum plane is equal to the mean motion of the argument of pericenter of the rotating body. This type of rotational motion is only possible when the orbital eccentricity of the rotating body is not zero. This new law enables describing in particular, the Moon mean rotational motion for which the mean value of the angle J is found to be equal to 103.9±0.7 s of arc.  相似文献   

12.
From previously published Markov chain derivations of the coefficients (in terms of transition probabilities) in the collisionless Boltzmann equation it proves possible, with plausible assumptions about the transition probabilities, to reduce to a partial differential equation with spiral characteristics. This is applied to the case of a rotating galaxy which has already become disk-shaped. The contangent of the angle between radial and tangential directions is then given by the ratio of radial velocity to circumferential velocity.Which already takes account of the deterministic effects of gravitation and angular momentum.  相似文献   

13.
Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.  相似文献   

14.
We deal with the problem of a zero mass body oscillating perpendicular to a plane in which two heavy bodies of equal mass orbit each other on Keplerian ellipses. The zero mass body intersects the primaries plane at the systems barycenter. This problem is commonly known as theSitnikov Problem. In this work we are looking for a first integral related to the oscillatory motion of the zero mass body. This is done by first expressing the equation of motion by a second order polynomial differential equation using a Chebyshev approximation techniques. Next we search for an autonomous mapping of the canonical variables over one period of the primaries. For that we discretize the time dependent coefficient functions in a certain number of Dirac Delta Functions and we concatenate the elementary mappings related to the single Delta Function Pulses. Finally for the so obtained polynomial mapping we look for an integral also in polynomial form. The invariant curves in the two dimensional phase space of the canonical variables are investigated as function of the primaries eccentricity and their initial phase. In addition we present a detailed analysis of the linearized Sitnikov Problem which is valid for infinitesimally small oscillation amplitudes of the zero mass body. All computations are performed automatically by the FORTRAN program SALOME which has been designed for stability considerations in high energy particle accelerators.  相似文献   

15.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

16.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   

17.
The general problem of motion of a rigid body about a fixed point under the action of stationary non-symmetric potential and gyroscopic forces is considered. The equations of motion in the Euler-Poisson form are derived. An interpretation is given in terms of charged, magnetized gyrostat moving in a superposition of three classical fields. As an example, the problem of motion of a satellite — gyrostat on a circular orbit with respect to its orbital system is reduced to that of its motion in an inertial system under additional magnetic and Lorentz forces.When the body is completely symmetric about one of its axes passing through the fixed point, the above problem is found to be equivalent to another one, in which the body has three equal moments of inertia and the forces are symmetric around a space axis. The last problem is well-studied and the given analogy reveals a number of integrable cases of the original problem. A transformation is found, which gives from each of these cases a class of integrable cases depending on an arbitrary function. The equations of motion are also reduced to a single equation of the second order.  相似文献   

18.
Electron-acoustic waves are studied with orbital angular momentum (OAM) in an unmagnetized collisionless uniform plasma, whose constituents are the Boltzmann hot electrons, inertial cold electrons and stationary ions. For this purpose, we employ the fluid equations to obtain a paraxial equation in terms of cold electron density perturbations, which admits both the Gaussian and Laguerre–Gaussian (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is found, which also allows us to express the components of the electric field in terms of LG potential perturbations. Calculating the energy flux of the electron-acoustic waves, an OAM density for these waves is obtained. Numerically, it is found that the parameters, such as, azimuthal angle, radial and angular mode numbers, and the beam waist strongly modify the LG potential profiles associated with electron-acoustic waves. The present results should be helpful to study the trapping and transportation of plasma particles and energy as well as to understand the electron-acoustic mode excitations produced by the Raman backscattering of laser beams in a uniform plasma.  相似文献   

19.
The Hamiltonian of three point masses is averaged over fast variablel and ll (mean anomalies) The problem is non-planar and it is assumed that two of the bodies form a close pair (stellar three-body problem). Only terms up to the order of (a/á)4 are taken into account in the Hamiltonian, wherea andá are the corresponding semi-major axes. Employing the method of elimination of the nodes, the problem may be reduced to one degree of freedom. Assuming in addition that the angular momentum of the close binary is much smaller than the angular momentum of the motion of the binary around a third body, we were able to solve the equation for the eccentricity changes in terms of the Jacobian elliptic functions.  相似文献   

20.
The angular momentum and the energy integral of the planar three-body problem are used to establish regions of the physical space where motion is allowed to take place. Although forbidden regions exist for both negative and positive values of the energy of the system, the known integrals of the motion always allow for at least one of the three bodies to escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号