首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Shanggong Au deposit in the Xiong’er Terrane, East Qinling, China, has resources of about 30 ton Au, making it one of the largest orogenic-mesothermal Au deposits hosted in volcanic rocks of the Mesoproterozoic Xiong’er Group. Three stages of hydrothermal activity are recognized (early, middle and late), of which two (early and middle) were ore producing and characterized by quartz–pyrite and polymetallic sulfides, respectively. The third and late stage is represented by a carbonate–quartz assemblage. Hydrogen, oxygen and carbon isotope systematics of the Shanggong deposit from a previous work suggest that the early stage fluids were derived from magmatic and/or metamorphic devolatilization of sedimentary rocks at depth. This is supported by new C, S and published Sr and Pb isotopic data, presented in this paper. These new data, δ13C values ranging from 1.5 ‰ for early stage ankerite to −2.2 ‰ for late stage ankerite, negative δ34S values for sulfides from the middle stage (–19.2 to –6.3 ‰), suggest a contribution from organic matter and that the ore fluid evolved from deeply sourced to shallowly sourced, with those of the middle stage representing a mixture of these two fluid systems. The comparison of the hydrogen–oxygen–carbon–sulfur–lead–strontium isotope systematics between the Shanggong deposit and the main lithologies in the Xiong’er Terrane, shows that neither these nor the underlying lower crust and mantle, or combinations thereof, could be considered as the source of ore fluids for the Shanggong Au deposit. A likely source was a carbonaceous carbonate, sandstone, shale, chert sequence in the underthrusted Guandaokou and Luanchuan Groups, exposed south of the Xiong’er Terrane.Ar–Ar and Rb–Sr isochron ages for mineral phases of the early, middle and late stages, together with geological field data, constrain the timing of the hydrothermal activity and Au metallogenesis at 242 ± 10, 167 ± 7 and 112 ± 7 Ma, respectively. This metallogenesis and associated granitic magmatism, can be related to the continental collision between the Yangtze and North China Cratons that resulted in the formation of the Qinling Orogen, led to the different hydrothermal systems that were responsible for the three stages that formed the Shanggong Au deposit, over a period of about 130 Myrs.  相似文献   

2.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

3.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

4.
To investigate the genesis of BIFs, we have determined the Fe and Si isotope composition of coexisting mineral phases in samples from the ∼2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV femtosecond laser ablation coupled to a MC-ICP-MS. Chert yields a total range of δ30Si between −1.3‰ and −0.8‰, but the Si isotope compositions are uniform in each core section examined. This uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources such as hydrothermal vents or continental drainage. The Fe isotope composition of Fe-bearing mineral phases is much more heterogeneous compared to Si with δ56Fe values of −2.2‰ to 0‰. This heterogeneity is likely due to variable degrees of partial Fe(II) oxidation in surface waters, precipitation of different mineral phases and post-depositional Fe redistribution. Magnetite exhibits negative δ56Fe values, which can be attributed to a variety of diagenetic pathways: the light Fe isotope composition was inherited from the Fe(III) precursor, heavy Fe(II) was lost by abiotic reduction of the Fe(III) precursor or light Fe(II) was gained from external fluids. Micrometer-scale heterogeneities of δ56Fe in Fe oxides are attributed to variable degrees of Fe(II) oxidation or to isotope exchange upon Fe(II) adsorption within the water column and to Fe redistribution during diagenesis. Diagenetic Fe(III) reduction caused by oxidation of organic matter and Fe redistribution is supported by the C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates yield δ13C values of ∼−10‰, which hints at a mixed carbon source in the seawater of both organic and inorganic carbon. The ancient seawater composition is estimated to have a minimum range in δ56Fe of −0.8‰ to 0‰, assuming that hematite and siderite have preserved their primary Fe isotope signature. The long-term near-zero Fe isotope composition of the Hamersley and Transvaal BIFs is in balance with the assumed composition of the Fe sources. The negative Fe isotope composition of the investigated BIF samples, however, indicates either a perturbation of the steady state, or they have to be balanced spatially by deposition of isotopically heavy Fe. In the case of Si, the negative Si isotope signature of these BIFs stands in marked contrast to the assumed source composition. The deviation from potential source composition requires a complementary sink of isotopically heavy Si in order to maintain steady state in the basin. Perturbing the steady state by extraordinary hydrothermal activity or continental weathering in contrast would have led to precipitation of light Si isotopes from seawater. Combining an explanation for both elements, a likely scenario is a steady state ocean basin with two sinks. When all published Fe isotope records including BIFs, microbial carbonates, shales and sedimentary pyrites, are considered, a complementary sink for heavy Fe isotopes must have existed in Precambrian ocean basins. This Fe sink could have been pelagic sediments, which however are not preserved. For Si, such a complementary sink for heavy Si isotopes might have been provided by other chert deposits within the basin.  相似文献   

5.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

6.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   

7.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO2 degassing results in large ranges of δ13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO2 escape results in gradual increase of δ13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems.  相似文献   

8.
The Qolqoleh gold deposit is located in northwestern part of the Sanandaj–Sirjan metamorphic belt, northwestern Iran. Igneous and sedimentary units exposed in the area have undergone greenschist metamorphism. The area was affected by a NE–SW trending shear zone and subsequent deformation. Two different types of mineralization are distinguished in the Qolqoleh gold deposit based on geological–structural conditions indicated by microtextural analysis: ductile and then brittle. Ore-forming processes are divided into three stages: Early (I), Middle (II) and Late (III), which include quartz–pyrite (I), sulfides and gold (II) and carbonate veinlets (III), respectively. The stage I fluids are characterized by δ18O = 15.5‰ at 440 ºC, and are thought to be deep-sourced metamorphic waters; the stage III fluids, with δ18O = 1.6‰, are shallow-sourced meteoric waters; whereas, the stage II fluids, with δ18O = 13.1‰, are a mixture of deep-sourced metamorphic and shallow-sourced meteoric fluids. Based on comparisons of the D–O–C isotopic systematics, the ore-forming fluids with characteristic high δ18O and δ13C and low δD originated from metamorphic devolatilization of Cretaceous volcano-sedimentary (felsic to mafic metavolcanic rocks–shale–carbonate–carbonaceous chert) sequences, locally rich in organic matter. During late Cretaceous continental collision of the Afro-Arabian continent and the Iranian microcontinent, a crustal slab consisting of felsic to mafic metavolcanic rocks, carbonate, shale and carbonaceous chert was underthrust northwards beneath the central Iranian microcontinent along the Zagros fault. During further contraction, deformation was localized in reverse oblique-slip structures with vergence toward south; shear zones generally follow contacts between more competent and less competent rock units. Metamorphic devolatilization of this underthrust slab is the source of the ore-forming fluids that generated the Au ore belt, which includes the Qolqoleh gold deposit.  相似文献   

9.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

10.
Pillow basalt and chert form integral lithologies comprising many Archean greenstone belt packages. To investigate details of these lithologies in the >3.7 Ga Isua Greenstone Belt, SW Greenland, we measured silicon isotope compositions of quartz crystals, by secondary ion mass spectrometry, from a quartz‐cemented, quartz‐amygdaloidal basaltic pillow breccia, recrystallized chert and chert clasts thought to represent silica precipitation under hydrothermal conditions. The recrystallized chert, chert clasts and quartz cement have overlapping δ30Si values, while the δ30Si values of the quartz amygdules span nearly the entire range of previously published values for quartz precipitates of any age, despite amphibolite facies metamorphism. We suggest that the heterogeneity is derived from kinetic isotope fractionation during quartz precipitation under disequilibrium conditions in a hydrothermal setting, consistent with the pillow breccia origin. On the basis of the present data, we conclude that the geological context of each sample must be carefully evaluated when interpreting δ30Si values of quartz.  相似文献   

11.
Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ34S and δ18O values ranging between −2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ34S values (−5.4‰ to −12.2‰) and high δ18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites’ I-type signature is indicated by the geochemical data and the δ34S and δ18O values of −1.2‰ and −3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ34S, between −33.2‰ and +25.7‰. Massive andesites with δ34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ34S of two andesitic dyke samples (−13.7‰ and −33.2‰) strongly suggest a crustal sulphur input. High δ18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707–0.708, andesites: 0.707–0.710, and microgranites and rhyolites: 0.717–0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, J., Doblas M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802] and some plutons of northeastern Algeria [Ouabadi, A., 1994. Pétrologie, géochimie et origine des granitoïdes peralumineux à cordiérite (Cap Bougaroun, Béni-Touffout et Filfila), Algérie nord-orientale. Thèse de Doctorat, Université de Rennes I, France, 257p; Fourcade, S., Capdevila, R., Ouabadi, A., Martineau, F., 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187–216].  相似文献   

12.
GISP2 Oxygen Isotope Ratios   总被引:3,自引:0,他引:3  
The GISP2 oxygen isotope record, with its high-resolution detail, yields crucial information on past climate change. The glacial δ18O oscillations of the GISP2 core, with their very fast onsets, are templates of a prototype oscillation of variable duration with an amplitude of 3.9‰. The halfway mark of the cold–warm transition is reached in 2 years; the top is reached in 50 years. The δ18O–time gradient of the leading front is about 7.8‰ per 100 yr. After reaching the top, δ18O slowly declines by −0.14‰ per 100 yr. The duration of δ18O decline varies from a couple of centuries for fast oscillations to about 4000 yr for slower ones. The subsequent δ18O downturn during the warm–cold transition has a δ18O–time gradient of −3.2‰ per 100 yr and lasts about 80 yr.  相似文献   

13.
A carbon and oxygen isotope survey based on 42 samples from the Amba Dongar carbonatite complex of Gujarat, India, indicates that the magmatic differentiation series sövite → alvikite → ankeritic carbonatite is beset with a distinct isotope trend characterized by a moderate rise in 13C coupled with a sizeable increase in 18O. From an average of −4.6 ± 0.4 ‰ [PDB] for the least differentiated (coarse) sövite member, δ13C values slowly increase in the alvikite (−3.7 ± 0.6 ‰) and ankeritic fractions (−3.0 ± 1.1 ‰), whereas δ18O rises from 10.3 ± 1.7 ‰ [SMOW] to 17.5 ± 5.8 ‰ over the same sequence, reaching extremes between 20 and 28 ‰ in the latest generation of ankeritic carbonatite. While an apparent correlation between δ13C and δ18O over the δ18O range of 7–13 ‰ conforms with similar findings from other carbonatite complexes and probably reflects a Rayleigh fractionation process, the observed upsurge of 18O notably in the ankeritic member is demonstrably related to a late phase of low-temperature hydrothermal activity involving large-scale participation of 18O-depleted groundwaters. As a whole, the Amba Dongar carbonatite province displays the characteristic 13C/12C label of deep-seated (primordial) carbon, reflecting the carbon isotope composition of the subcontinental upper mantle below the Narmada Rift Zone of the Indian subcontinent.  相似文献   

14.
Heterogeneous shallow Plio-Quaternary formations of the Souss Plain represent the most important aquifer in southern High Atlas Mountains in Morocco. The present work was conducted in the Souss Upstream Basin to identify the chemical characteristics and the origin of groundwater in an aquifer under semi-arid climate. Isotopic and hydrochemical compositions combined with geological and hydrogeological data were used for this purpose. The total dissolved solids vary from 239 to 997 mg l−1, and the following groundwater types are recognized: Ca2+–Mg2+–HCO3, Ca2+–Mg2+–SO42− and Ca2+–Mg2+–Cl. The groundwater is saturated and slightly supersaturated with respect to carbonate minerals and undersaturated with respect to evaporite minerals, which means that the groundwater composition is largely controlled by the dissolution of carbonate rocks known in the basin. The isotopic contents of groundwaters ranged from −8‰ to −5.2‰ for δ18O, from −52‰ to −34‰ for δD, and from 0 to 5.5 TU for tritium. The hydrogen (δD) and oxygen (δ18O) isotope signatures reveal a significant infiltration before evaporation takes place, indicating a major recharge directly from fractures in the crystalline and limestone formations of Atlas Mountains (above 800 m a.s.l.) and infiltration of surface water in the alluvial cones at the border of the Atlas basins. The very low tritium values suggest that the groundwater recharge follows a long flow path and a mixing between old and modern water is shown. However, a slight evaporation effect is noted in the southern part of the basin close to the Anti-Atlas Mountains.  相似文献   

15.
Elemental (C/N ratio) and C isotope composition (δ13C) of particulate organic C (POC) and organic C content (OC) of total suspended solids (TSS) were determined for two subtropical karstic tributaries of the Yangtze River, the Wujiang (the eighth largest tributary) and Yuanjiang (the third largest tributary). For the latter, two headwaters, the karstic Wuyanghe and non-karstic Qingshuijiang were studied. The Wujiang catchment is subject to intensive land use, has low forest coverage and high soil erosion rate. The δ13C of POC covered a range from −30.6‰ to −24.9‰, from −27.6‰ to −24.7‰, and from −26.2‰ to −23.3‰ at the low-water stage, while at the high-water stage varied in a span between −28.6‰ and −24.4‰, between −27.7‰ and −24.5‰, and between −27.6‰ and −24.2‰ for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The combined application of C isotopes, C/N ratio, OC, and TSS analyses indicated that catchment soil was the predominant source of POC for the Wujiang while for the Wuyanghe and Qingshuijiang, in-stream processes supplied the main part of POC in winter and summer. A significant increase in δ13C value (1.4‰) of POC was found in the Wujiang during summer, and was attributed to the enhanced soil erosion of the dry arable uplands close to the riverbanks of the main channel. Based on a conservative estimate, POC fluxes were 3.123 × 1010, 0.084 × 1010, and 0.372 × 1010 g a−1 while export rates of POC were 466, 129, and 218 mg m−2 a−1 for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The POC export rate for the karstic Wujiang, with intensive land use, was 2–3 higher than that of the karstic Wuyanghe or of the non-karstic Qingshuijiang where soil erosion was minor. Such high values imply rapid degradation of related karstic ecosystems impacted by intensive land use activities, and pose a potential threat to the health of the Three Gorges Reservoir.  相似文献   

16.
Microbial dissimilatory iron reduction (DIR) has been identified as a mechanism for production of aqueous Fe(II) that has low 56Fe/54Fe ratios in modern and ancient suboxic environments that contain ferric oxides or hydroxides. These studies suggest that DIR could have played an important role in producing distinct Fe isotope compositions in Precambrian banded iron formations or other marine sedimentary rocks. However, the applicability of experimental studies of Fe isotope fractionation produced by DIR in geochemically simple systems to ancient marine environments remains unclear. Here we report Fe isotope fractionations produced during dissimilatory microbial reduction of hematite by Geobacter sulfurreducens in the presence and absence of dissolved Si at neutral and alkaline pH. Hematite reduction was significantly decreased by Si at alkaline (but not neutral) pH, presumably due to Si polymerization at the hematite surface. The presence of Si altered Fe isotope fractionation factors between aqueous Fe(II) or sorbed Fe(II) and reactive Fe(III), reflecting changes in bonding environment of the reactive Fe(III) component at the oxide surface. Despite these changes in isotopic fractionations, our results demonstrate that microbial Fe(III) oxide reduction produces Fe(II) with negative δ56Fe values under conditions of variable pH and dissolved Si, similar to the large inventory of negative δ56Fe in Neoarchean and Paleoproterozoic age marine sedimentary rocks.  相似文献   

17.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

18.
We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of δ11B values from −29.5 to −0.3‰, whereas fluids cover a range from −18.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonic conditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of δ11B=−8.9±2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites (δ11B=−3.8±2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones (δ11B≤+8‰) provide a potential third boron source.  相似文献   

19.
UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to investigate elemental and isotope ratios by non-matrix-matched calibration. In this study, we investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, fayalite and forsterite (San Carlos Olivine), and an oceanic Fe–Mn crust using the iron reference material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope compositions were obtained independently by solution ICP-MS after chromatographic separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the Fe–Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data within the measured precision. For high Cr concentration (54Cr/54Fe >0.0001), i.e. in the garnet and forsterite sample, δ56/54Fe and δ57/54Fe values were derived from 57Fe/56Fe ratios as correction of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This study adds to the observations of Horn et al. (2006) who have shown that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, which provides a substantial advantage over commonly employed nanosecond laser ablation systems.  相似文献   

20.
Individual and monthly precipitation samples from the polluted atmosphere of Bologna (Emilia-Romagna province) were collected during March 1996 to May 1997 and analyzed for major ions in solution and S isotopes in dissolved SO4.Weighted mean enrichment factors relative to seawater are found to be 1.0 for Na, 15.2 for K, 105 for Ca, 3.3 for Mg, 17.3 for SO4 and 663 for HCO3. Very good positive correlations are observed for the Ca2+–Mg2+–HCO3–SO2−4–NO3 system, indicating that dissolution of Ca (±Mg)-carbonate particles by H2SO4 and HNO3 from combustion of oil and gas is a major process controlling the chemical composition of rain and snow. Na+ and Cl in monthly precipitation derive essentially from sea spray, but the contribution of Na+ from continental sources is appreciable in a number of individual rains. NH+4 appears to be on average more abundant in spring and summer precipitation, its main sources being microbial activity in soils and application of fertilizers. K+ is probably of continental origin from soil dust.The S isotopic composition of SO4 is systematically positive, with mean δ34S values of +3.2±1.6‰ (n=40) in individual precipitation and +2.8±1.4‰ (n=12) in monthly precipitation. These isotopic compositions are interpreted in terms of a dominant contribution of S from anthropogenic emissions and subordinate contributions from biogenic and marine sources. Pollutant SO4 is estimated to have a δ34S value in the range +2.5 to +4.5‰, whereas a distinctive δ34S of −4.5‰ or lower indicates SO4 from oxidation of biogenic gases.The isotopic and chemical compositions of SO4 do not depend on wind direction, thus testifying to a mostly local source for pollutant S in the Bologna atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号