首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory (ESO) and the community by the KiDS survey team. Spread over Europe, the KiDS team uses Astro-WISE as its main tool to collaborate efficiently and pool hardware resources. In Astro-WISE the team shares, calibrates and archives all survey data. The data-centric architectural design realizes a dynamic ‘live archive’ in which new KiDS survey products of improved quality can be shared with the team and eventually the full astronomical community in a flexible and controllable manner.  相似文献   

2.
We present a novel approach to quality control during the processing of astronomical data. Quality control in the Astro-WISE Information System is integral to all aspects of data handing and provides transparent access to quality estimators for all stages of data reduction from the raw image to the final catalog. The implementation of quality control mechanisms relies on the core features in this Astro-WISE Environment (AWE): an object-oriented framework, full data lineage, and both forward and backward chaining. Quality control information can be accessed via the command-line awe-prompt and the web-based Quality-WISE service. The quality control system is described and qualified using archive data from the 8-CCD Wide Field Imager (WFI) instrument (http://www.eso.org/lasilla/instruments/wfi/) on the 2.2-m MPG/ESO telescope at La Silla and (pre-)survey data from the 32-CCD OmegaCAM instrument (http://www.astro-wise.org/~omegacam/) on the VST telescope at Paranal.  相似文献   

3.
MDia and POTS     
We describe the Munich Difference Imaging Analysis pipeline that we developed and implemented in the framework of the Astro-WISE1 package to automatically measure high precision light curves of a large number of stellar objects using the difference imaging approach. Combined with programs to detect time variability, this software can be used to search for planetary systems or binary stars with the transit method and for variable stars of different kinds. As a first scientific application, we discuss the data reduction and analysis performed with Astro-WISE on the pre-OmegaTranS data set, that we collected during a monitoring campaign of a dense stellar field with the Wide Field Imager at the ESO 2.2 m telescope.  相似文献   

4.
Results from optical photometric observations of the pre-main sequence star GM Cep are reported in the paper. The star is located in the field of the young open cluster Trumpler 37—a region of active star formation. GM Cep shows a large amplitude rapid variability interpreted as a possible outburst from EXor type in previous studies. Our data from BVRI CCD photometric observations of the star are collected from June 2008 to February 2011 in Rozhen observatory (Bulgaria) and Skinakas observatory (Crete, Greece). A sequence of sixteen comparison stars in the field of GM Cep was calibrated in the BVRI bands. Our photometric data for a 2.5 years period show a high amplitude variations ($\Delta V \sim2\mbox{$\Delta V \sim2\mbox{) and two deep minimums in brightness are observed. The analysis of collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. On the other hand, high amplitude rapid variations in brightness typical for the Classical T Tauri stars also present on the light curve of GM Cep. Comparing our results with results published in the literature, we conclude that changes in brightness are caused by superposition of both: (1) magnetically channeled accretion from the circumstellar disk, and (2) occultation from circumstellar clouds of dust or from features of a circumstellar disk.  相似文献   

5.
In this paper we describe the way the Astro-WISE information system (or simply Astro-WISE) supports the data from a wide range of instruments and combines multiple surveys and their catalogues. Astro-WISE allows ingesting of data from any optical instrument, survey or catalogue, processing of this data to create new catalogues and bringing in data from different surveys into a single catalogue, keeping all dependencies back to the original data. Full data lineage is kept on each step of compiling a new catalogue with an ability to add a new data source recursively. With these features, Astro-WISE allows not only combining and retrieving data from multiple surveys, but performing scientific data reduction and data mining down to the rawest data in the data processing chain within a single environment.  相似文献   

6.
The X‐shooter data reduction pipeline is an integral part of the X‐shooter project, it allows the production of reduced data in physical quantities from the raw data produced by the instrument. The pipeline is based on the data reduction library developed by the X‐shooter consortium with contributions from France, The Netherlands and ESO and it uses the Common Pipeline Library (CPL) developed at ESO. The pipeline has been developed for two main functions. The first function is to monitor the operation of the instrument through the reduction of the acquired data, both at Paranal, for a quick‐look control, and in Garching, for a more thorough evaluation. The second function is to allow an optimized data reduction for a scientific user. In the following I will first outline the main steps of data reduction with the pipeline then I will briefly show two examples of optimization of the results for science reduction (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The paper reviews the Astro-WISE infrastructure and demonstrates that the Astro-WISE Information System provides a Grid itself. We describe the integration of Astro-WISE with an external Grid infrastructure (BiGGrid). The integration is performed on all infrastructural layers (data storage, metadata and processing layers) with Astro-WISE as a “master” infrastructure. We report the use of the integrated infrastructure for the processing of Astro-WISE hosted data and for the future development of Astro-WISE and Target projects.  相似文献   

8.
The Kuiper-Belt Object (29981) 1999 TD10, classified as a Scattered-Disk Object, has been observed at three different phase angles with the ESO 8.2-m VLT and FORS 1 instrument in polarimetric mode in November and December 2003. These observations have been used to compute the Stokes parameter q, which represents the linear polarization degree. We have also used the previously published photometric observations to improve the R-band phase function. The main conclusions are as follows: (i) a negative linear polarization degree decreasing with phase angle α up to, at least, α=3°, (ii) for α=3°, (iii) a possible color effect between the R and V band, the polarization degree being more negative in R. The R-band polarimetric observations can be explained by the coherent-backscattering mechanism and fitted by a two-component Rayleigh-scatterer model for a spherical small body. The rotation period of 15.382±0.001 h published by Mueller et al. (2004, Icarus 171, 506–515) and Choi et al. (2003, Icarus 165, 101–111) is confirmed. The R-band phase curve provides H=8.35±0.02 and G=−0.25±0.022 parameters with the IAU HG formalism.Based on observations obtained at the Cerro Paranal observatory of the European Southern Observatory (ESO) in Chile.  相似文献   

9.
Given the high cost of modern astronomical observing facilities it is evident that efforts must be made to optimally exploit the data in order to maximize the return on investment. This concept was first implemented on a large scale for the Hubble Space Telescope, and has since been taken over for other space borne and large ground-based facilities. The European HST Science Data Archive is located at the European Southern Observatory (ESO). It has been extended to include data from ESO telescopes and instruments, especially the Very Large Telescope (VLT) and Wide Field Imager (WFI). It was thus natural to design the archive such that queries could be extended across its full content, regardless of the origin of the data. This constituted a first step toward a virtual observatory. The Astrovirtel program, first established in 1999–2000 with funding provided by the European Commission, makes it possible for scientists to use this facility for their investigations. At the same time it allowed us to establish science requirements for archive cross queries, and to define capabilities required for VO's. Recently the European Commission decided to provide the funding for the implementation of the Astrophysical Virtual Observatory (AVO). This will include several European observatories and scientific organizations. It is being developed in close coordination with the US National Virtual Observatory.  相似文献   

10.
The Zeiss-2000 telescope of the International Center for Astronomic and Medico-Ecological Research, National Academy of Sciences of Ukraine (Terskol observatory), with a 2-meter aperture is the largest optical instrument in Europe that is regularly used for investigating space debris in the vicinity of the geostationary orbit. One of the main objectives is to detect and characterize small fragments of space debris that are difficult to approach for other telescopes. During each photometric night, we usually detect four to five unknown fragments of 17th to 20th magnitude. This article provides orbital parameters and physical characteristics of several small-sized fragments of space debris that were detected during observations at Terskol observatory in 2014–2015.  相似文献   

11.
We describe the implementation of the PhotoZ code in the framework of the Astro-WISE package and as part of the Photometric Classification Server of the PanSTARRS pipeline. Both systems allow the automatic measurement of photometric redshifts for the millions of objects being observed in the PanSTARRS project or expected to be observed by future surveys like KIDS, DES or EUCLID.  相似文献   

12.
Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR’s primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ, with an accuracy of two parts in 107, thereby improving today’s best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, G and of the gravitational inverse square law at 1.5-AU distances—with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25-mJ, 10-ps pulses at 1 kHz, and receiving asynchronous 1-kHz pulses from earth via a 12-cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1-mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities—with appropriate augmentation—may be able to participate in PLR. Since Phobos’ orbital period is about 8 h, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 yr of science operations. We discuss the PLR’s science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission’s primary objectives.  相似文献   

13.
From a simple text interface to a graphical user interfaces—Astro-WISE provides the user with a wide range of possibilities to interact with the information system according to the user’s tasks and use cases. We describe a general approach to the interfacing of a scientific information system. We use this approach to create a number of services, which allows the user to browse the data stored in the system, to process the data and to exchange the newly created images and catalogs with the users within the system and wider astronomical community. Reusability of interfaces and services is another important feature of our approach. It reduces the time and resources spent to interface other information systems created from Astro-WISE.  相似文献   

14.
BVR photometric and quasi-simultaneous optical spectroscopic observations of the star HD 81032 have been carried out during the years 2000-2004. A photometric period of 18.802 ± 0.07d has been detected for this star. A large group of spots with a migration period of 7.43 ± 0.07 years is inferred from the first three years of the data. Hα and CaII H and K emissions from the star indicate high chromospheric activity. The available photometry in the BVRIJHK bands is consistent with the spectral type of K0IV previously found for this star. We have also examined the spectral energy distribution of HD 81032 for the presence of an infrared colour excess using the 2MASS JHK and IRAS photometry, but found no significant excess in any band above the normal values expected for a star with this spectral type. We have also analyzed the X-ray emission properties of this star using data obtained by the ROSAT X-ray observatory during its All-Sky Survey phase. An X-ray flare of about 12 hours duration was detected during the two days of X-ray coverage obtained for this star. Its X-ray spectrum, while only containing 345 counts, is inconsistent with a single-temperature component solar-abundance coronal plasma model, but implies either the presence of two or more plasma components, nonsolar abundances, or a combination of both of these properties. All of the above properties of HD 81032 suggest that it is a newly identified, evolved RS CVn binary.  相似文献   

15.
Astrometric and photometric observations of asteroid (308635) 2005 YU55 were carried out at the computer-aided ZA-320M and MTM-500M telescopes of the Pulkovo observatory in the period of its closest approach to the Earth, from November 9 to 20, 2011. The new orbit of the asteroid changed after its close approach to the Earth was determined. From this orbit, a close approach to Venus on January 19, 2029, was precalculated, and the distance at the closest approach—359000 km—was estimated. From the analysis of the acquired photometric data, the axial rotation period of the asteroid was more accurately determined, and it amounted to 16.3 ± 0.4 h. The color indexes of the asteroid, B-V, V-R, and R-I, were estimated, which allowed the taxonomic class of the asteroid, B, to be determined from them. In addition, from our photometric observations of the asteroid, the earlier unknown change in its brightness with a period of 0.9–1.2 h was detected; the cause of this change has not been completely studied yet.  相似文献   

16.
X‐shooter, an intermediate resolution spectrograph, is the first VLT instrument of the second generation. It was built in a record time of 6 years by a Consortium of Institutes in Denmark, France, Italy, The Netherlands and at ESO and started operation in 2009. For the first time in astronomical instrumentation, X‐shooter offers parallel coverage from the atmospheric cut‐off at 300 nm to the K band, a feature that allows for the timely capture of the spectra of targets of unknown redshift like the GRBs (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is an imaging survey being carried out in  Hα, r '  and   i '  filters, with the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) to a depth of   r '= 20  (10σ). The survey is aimed at revealing the large scale organization of the Milky Way and can be applied to identifying a range of stellar populations within it. Mapping emission line objects enables a particular focus on objects in the young and old stages of stellar evolution ranging from early T-Tauri stars to late planetary nebulae. In this paper we present the IPHAS Initial Data Release, primarily a photometric catalogue of about 200 million unique objects, coupled with associated image data covering about 1600 deg2 in three passbands. We note how access to the primary data products has been implemented through use of standard virtual observatory publishing interfaces. Simple traditional web access is provided to the main IPHAS photometric catalogue, in addition to a number of common catalogues (such as 2MASS) which are of immediate relevance. Access through the AstroGrid VO Desktop opens up the full range of analysis options, and allows full integration with the wider range of data and services available through the Virtual Observatory. The IDR represents the largest data set published primarily through VO interfaces to date, and so stands as an exemplar of the future of survey data mining. Examples of data access are given, including a cross-matching of IPHAS photometry with sources in the UKIDSS Galactic Plane Survey that validates the existing calibration of the best data.  相似文献   

18.
《New Astronomy》2007,12(7):562-568
Photoelectric observations of the sky brightness along Sun’s meridian have been carried out at Salloum during the March 29, 2006 total solar eclipse. The measurements have been taken at different zenith distances along the Sun’s meridian using yellow and red wide band glass filters centered at 5500 Å and 7900 Å, respectively. The present results of the sky brightness during the total solar eclipse have been compared with that of twilight, and night sky obtained by the same instrument at Abu-Simbel and Kottamia observatory sites respectively. The variation of V–R color index with zenith distance have been also studied. The visibility of planets and stars during the March 29, 2006 total solar eclipse is given.  相似文献   

19.
We show how traditional instrument quality control trending can be augmented by the use of a physical instrument model. The ESO VLT archive contains a detailed record of instrument diagnostics and calibration parameters while ESO quality control monitors changes in critical parameters. The physical model allows changes in positions, orientations and other physical properties of a spectrograph to be determined from standard wavelength calibration exposures via an optimisation process that seeks the physical model parameters that best reproduce the calibration features in the data. We introduce physical model parameters to the quality control monitoring. When applying this technique to archived calibration exposures, we find that the results are sensitive to the combination of parameters open to the optimisation process. Therefore we determine the most favourable set of physical parameters to optimise for each arm. We then show correlations between several physical parameters and instrument temperature sensor readings and epoch. In addition we find clear discontinuities in some physical parameter values that correspond to known maintenance events.  相似文献   

20.
In 2009, in five Russian observatories photometric observations of Jupiter’s Galilean satellites during their mutual occultations and eclipses were carried out. Based on these observations, an original method was used to ascertain astrometric results such as the difference between the coordinates of pairs of satellites. Fifty-three phenomena were successfully observed. A total of 94 light curves of satellites were measured. The error in the coordinates of satellites due to random errors in photometry, calculated on all data obtained, was 0.041″ in right ascension and 0.046″ in declination. The discrepancies between the theory and observations in these coordinates was found to be 0.060″ and 0.057″, respectively. The results were uploaded to the common database for all observations of natural satellites of planets at the Natural Satellites Data Center (NSDC), which is available online at http://www.sai.msu.ru/neb/nss/index.htm. For the first time in the practice of photometric observations of satellites in epochs of mutual occultations and eclipses a new method of observation was tested, which eliminates from astrometric results the major systematic errors caused by an inaccurate account of the background level. The tests were conducted in the Terskol Observatory and the observatory of the Crimean laboratory of the Sternberg State Astronomical Institute of the Moscow State University. The application of the new method showed that the elimination of the background level at these observatories was carried out correctly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号