首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

2.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

3.
We study the dynamics of 3:1 resonant motion for planetary systems with two planets, based on the model of the general planar three body problem. The exact mean motion resonance corresponds to periodic motion (in a rotating frame) and the basic families of symmetric and asymmetric periodic orbits are computed. Four symmetric families bifurcate from the family of circular orbits of the two planets. Asymmetric families bifurcate from the symmetric families, at the critical points, where the stability character changes. There exist also asymmetric families that are independent of the above mentioned families. Bounded librations exist close to the stable periodic orbits. Therefore, such periodic orbits (symmetric or asymmetric) determine the possible stable configurations of a 3:1 resonant planetary system, even if the orbits of the two planets intersect. For the masses of the system 55Cnc most of the periodic orbits are unstable and they are associated with chaotic motion. There exist however stable symmetric and asymmetric orbits, corresponding to regular trajectories along which the critical angles librate. The 55Cnc extra-solar system is located in a stable domain of the phase space, centered at an asymmetric periodic orbit.  相似文献   

4.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

5.
A complete study is made of the resonant motion of two planets revolving around a star, in the model of the general planar three body problem. The resonant motion corresponds to periodic motion of the two planets, in a rotating frame, and the position and stability properties of the periodic orbits determine the topology of the phase space and consequently play an important role in the evolution of the system. Several families of symmetric periodic orbits are computed numerically, for the 2/1 resonance, and for the masses of some observed extrasolar planetary systems. In this way we obtain a global view of all the possible stable configurations of a system of two planets. These define the regions of the phase space where a resonant extrasolar system could be trapped, if it had followed in the past a migration process.The factors that affect the stability of a resonant system are studied. For the same resonance and the same planetary masses, a large value of the eccentricities may stabilize the system, even in the case where the two planetary orbits intersect. The phase of the two planets (position at perihelion or aphelion when the star and the two planets are aligned) plays an important role, and the change of the phase, other things being the same, may destabilize the system. Also, the ratio of the planetary masses, for the same total mass of the two planets, plays an important role and the system, at some resonances and some phases, is destabilized when this ratio changes.The above results are applied to the observed extrasolar planetary systems HD 82943, Gliese 876 and also to some preliminary results of HD 160691. It is shown that the observed configurations are close to stable periodic motion.  相似文献   

6.
Periodic orbits     
Recent results on periodic orbits are presented. Planetary systems can be studied by the model of the general 3-body problem and also some satellite systems and asteroid orbits can be studied by the model of the restricted 3-body problem. Triple stellar systems and planetary systems with two Suns are close to periodic systems. Finally, the motion of stars in various types of galaxies can be studied by finding families of periodic orbits in several galactic models.  相似文献   

7.
Families of nearly circular periodic orbits of the planetary type are studied, close to the 3/1 mean motion resonance of the two planets, considered both with finite masses. Large regions of instability appear, depending on the total mass of the planets and on the ratio of their masses.Also, families of resonant periodic orbits at the 2/1 resonance have been studied, for a planetary system where the total mass of the planets is the 4% of the mass of the sun. In particular, the effect of the ratio of the masses on the stability is studied. It is found that a planetary system at this resonance is unstable if the mass of the outer planet is smaller than the mass of the inner planet.Finally, an application has been made for the stability of the observed extrasolar planetary systems HD82943 and Gliese 876, trapped at the 2/1 resonance.  相似文献   

8.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

9.
The factors which affect the linear stability of a periodic planetary orbit in the plane are studied. It is proved that planetary systems with two planets describing nearly circular orbits in the same direction are linearly stable and no perturbation exists which destroys the stability, unless a resonance of the form 1/3, 3/5, 5/7, ... among the orbits of the planets occurs. This latter resonant case is always unstable. Retrograde motion is always linearly stable. Planetary systems with three or more planets in nearly circular orbits in the same direction are proved to be unstable, in the sense that a Hamiltonian perturbation always exists which destroys the stability. The generation of instability in the case of three or more planets is not only due to the existence of resonances, as in the case of two planets, but also to the nonexistence of integrals of motion, apart from the energy and angular momentum integrals. It is also proved that planetary systems with nearly elliptic orbits of the planets are unstable.  相似文献   

10.
We consider a two-planet system migrating under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, vertical critical orbits may give rise to generating stable families of \(3D\) periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the \(2/1\) and \(3/1\) resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the “inclination resonance” occurs.  相似文献   

11.
A review is presented of periodic orbits of the planetary type in the general three-body problem and fourbody problem and the restricted circular and elliptic tnreebody problem. These correspond to planetary systems with one Sun and two or three planets (or a planet and its satellites), the motion of asteoids and also planetary systems with two Suns. The factors which affect the stability of the above configurations are studied in connection with resonance or additional perturbations. Finally, the correspondence of the periodic orbits in the restricted three-body problem with the fixed points obtained by the method of averaging or the method of surface of section is indicated.  相似文献   

12.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

13.
We study the dynamics of planetary systems with two planets moving in the same plane, when frictional forces act on the two planets, in addition to the gravitational forces. The model of the general three-body problem is used. Different laws of friction are considered. The topology of the phase space is essential in understanding the evolution of the system. The topology is determined by the families of stable and unstable periodic orbits, both symmetric and non symmetric. It is along the stable families, or close to them, that the planets migrate when dissipative forces act. At the critical points where the stability along the family changes, there is a bifurcation of a new family of stable periodic orbits and the migration process changes route and follows the new stable family up to large eccentricities or to a chaotic region. We consider both resonant and non resonant planetary systems. The 2/1, 3/1 and 3/2 resonances are studied. The migration to larger or smaller eccentricities depends on the particular law of friction. Also, in some cases the semimajor axes increase and in other cases they are stabilized. For particular laws of friction and for special values of the parameters of the frictional forces, it is possible to have partially stationary solutions, where the eccentricities and the semimajor axes are fixed.  相似文献   

14.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

15.
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.  相似文献   

16.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

17.
This is a numerical study of orbits in the elliptic restricted three-body problem concerning the dependence of the critical orbits on the eccentricity of the primaries. They are defined as being the separatrix between stable and unstable single periodic orbits. As our results are adapted to the existence of planetary orbits in double stars we concentrated first on the P-orbits (defined to surround both primaries). Due to the complexity of the elliptic problem there is no analytical approach possible. Using the results of some 300 integrated orbits for 103 to 3. 103 periods of the primaries we established lower and upper bounds for the critical orbits for different values of the eccentricity.  相似文献   

18.
Recent results on periodic orbits are presented and it is shown that the periodic orbits can be used in the study of planetary systems and triple or multiple stellar systems. Triple stellar systems are stable even for close approaches of the three components. Also stable triple systems exist with nearly zero angular momentum. For the planetary systems a global view is obtained from which it is clear which configurations are stable or unstable and also what factors affect the stability. Also, the relation between resonance and instability is studied by making use of periodic orbits.  相似文献   

19.
We study the regions of finite motions in the vicinity of three simple stable periodic orbits in the general problem of three equal-mass bodies with a zero angular momentum. Their distinctive feature is that one of the moving bodies periodically passes through the center of mass of the triple system. We consider the dynamical evolution of plane nonrotating triple systems for which the initial conditions are specified in such a way that one of the bodies is located at the center of mass of the triple system. The initial conditions can then be specified by three parameters: the virial coefficient k and the two angles, φ1 and φ2, that characterize the orientation of the velocity vectors for the bodies. We scanned the region of variation in these parameters k∈(0, 1); φ1, φ2∈(0, π) at steps of δk=0.01; δφ1=δφ2=1° and identified the regions of finite motions surrounding the periodic orbits. These regions are isolated from one another in the space of parameters (k, φ1, φ2). There are bridges that correspond to unstable orbits with long lifetimes between the regions. During the evolution of these metastable systems, the phase trajectory can “stick” to the vicinity of one of the periodic orbits or move from one vicinity to another. The evolution of metastable systems ends with their breakup.  相似文献   

20.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号