首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
庞河清  匡建超  王众  刘海松  蔡左花  黄耀综 《物探与化探》2012,36(6):1001-1005,1013
针对低孔、低渗致密储层识别较常规储层难这一问题,首次应用核主成分分析与支持向量机(KPCA-SVM)模型进行储层识别.该模型先通过核主成分分析(KPCA)进行非线性特征参数提取,然后将提取的特征参数作为支持向量机(SVM)的输入变量,最终实现储层识别.由于KPCA-SVM模型集成了核函数、主成分和支持向量分类机的优点,较好地解决非线性小样本的问题,能消除数据之间的噪音,降低维数,而又不缺失有效信息,达到准确快速预测的功能.将该模型应用到新场须二气藏新856井区储层预测中,预测结果验证了本模型的优越性,可作为致密储层预测的可选方法.  相似文献   

2.
The role of shear dilation as a mechanism of enhancing fluid flow permeability in naturally fractured reservoirs was mainly recognized in the context of hot dry rock (HDR) geothermal reservoir stimulation. Simplified models based on shear slippage only were developed and their applications to evaluate HDR geothermal reservoir stimulation were reported. Research attention is recently focused to adjust this stimulation mechanism for naturally fractured oil and gas reservoirs which reserve vast resources worldwide. This paper develops the overall framework and basic formulations of this stimulation model for oil and gas reservoirs. Major computational modules include: natural fracture simulation, response analysis of stimulated fractures, average permeability estimation for the stimulated reservoir and prediction of an average flow direction. Natural fractures are simulated stochastically by implementing ‘fractal dimension’ concept. Natural fracture propagation and shear displacements are formulated by following computationally efficient approximate approaches interrelating in situ stresses, natural fracture parameters and stimulation pressure developed by fluid injection inside fractures. The average permeability of the stimulated reservoir is formulated as a function of discretized gridblock permeabilities by applying cubic law of fluid flow. The average reservoir elongation, or the flow direction, is expressed as a function of reservoir aspect ratio induced by directional permeability contributions. The natural fracture simulation module is verified by comparing its results with observed microseismic clouds in actual naturally fractured reservoirs. Permeability enhancement and reservoir growth are characterized with respect to stimulation pressure, in situ stresses and natural fracture density applying the model to two example reservoirs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
张洪  王庆  夏星  勾炜  宋青 《地质论评》2022,68(4):2022072010-2022072010
空气泡沫驱是重要三采技术,为了了解该技术适用储层类型,笔者等通过文献调研、机理分析、室内实验及油藏生产动态数据分析研究其注入效果与储层非均质性关系,结果表明:该技术通过泡沫体系产生阻力提高波及系数,泡沫中包含的表面活性剂降低界面张力提高驱油效率,泡沫特性“遇油消泡,遇水不变”可有效调剖堵水并改善流度比,非均质性强的储层具有大小不一的孔喉、较大的孔喉比和较强的贾敏效应,使上述增加波及系数、驱油及堵水效果更强,从而在水驱基础上可以进一步大幅提高采收率。实验和生产动态资料都说明,储层非均质性越强,表现为渗透率级差较大,增产和堵水效果越好,因此空气泡沫驱适用于储层非均质性较强的储层。该研究成果为空气泡沫驱的推广提供借鉴。  相似文献   

4.
张洪  王庆  夏星  勾炜  宋青 《地质论评》2023,69(1):375-382
空气泡沫驱是重要三采技术,为了了解该技术适用储层类型,笔者等通过文献调研、机理分析、室内实验及油藏生产动态数据分析研究其注入效果与储层非均质性关系,结果表明:该技术通过泡沫体系产生阻力提高波及系数,泡沫中包含的表面活性剂降低界面张力提高驱油效率,泡沫特性“遇油消泡,遇水不变”可有效调剖堵水并改善流度比,非均质性强的储层具有大小不一的孔喉、较大的孔喉比和较强的贾敏效应,使上述增加波及系数、驱油及堵水效果更强,从而在水驱基础上可以进一步大幅提高采收率。实验和生产动态资料都说明,储层非均质性越强,表现为渗透率级差较大,增产和堵水效果越好,因此空气泡沫驱适用于储层非均质性较强的储层。该研究成果为空气泡沫驱的推广提供借鉴。  相似文献   

5.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   

6.
One of the challenges for reservoir simulation is numerical dispersion. For waterflooding applications the effect is controlled due to the self-sharpening nature of a Buckley–Leverett shock. However, for multi-component flow simulations, incorrect wavespeeds can develop leading to the excessive smearing of fronts because of the coupling of compositional dispersion with the fractional flow. Rather than implementing a higher-order discretization method, we propose a simple scheme based on segregation-in-flow within a gridblock to control numerical dispersion. We extend the method originally proposed for polymer flooding to augmented waterflooding simulations in general as well as simulations of miscible or near miscible gas injection. For compositional simulations of gas injection, this is done through a coupled limited-flash/upstream-exclusion assumption. To test the scheme, an in-house streamline simulator has been modified and validated for modeling low-salinity floods as well as ternary two-phase displacements. Simulation results presented with and without segregation demonstrate the potential of the approach as a heuristic method to control numerical dispersion in multi-component flow simulations.  相似文献   

7.
Whitman  Z. R.  Wilson  T. M.  Seville  E.  Vargo  J.  Stevenson  J. R.  Kachali  H.  Cole  J. 《Natural Hazards》2013,65(3):1849-1861
A methodology for evaluating real-time optimal reservoir releases under flooding conditions that minimizes flood damages for a river-reservoir system is described in this paper. The problem is formulated as a discrete-time optimal control problem in which reservoir releases are the control variables, and water surface elevations and discharges are the state variables. Constraints imposed on the reservoir’s water surface elevations and reservoir releases to the downstream reaches are incorporated into an objective function using a penalty function method. The optimal control model consists of the two primary interfaced components: (1) the U.S. Geological Survey Full EQuation routing model to simulate the unsteady flow dynamics of the river-reservoir system and (2) an optimization technique, simulated annealing that optimizes reservoir releases (flood control gate operations) subject to system constraints. The model solves an augmented control problem. The model was applied to the river-reservoir system of Lake Travis on the Lower Colorado River in Texas. The model application to Lake Travis revealed the usefulness of the model in improving a given operation policy, regardless of the type objective function (linear or nonlinear). The methodology and the operation model developed here are unique since they can be applied to any river-reservoir system, do not require simplification of nonlinearities, and guarantee the determination of an optimal or near-global optima.  相似文献   

8.
An adjoint formulation for the gradient-based optimization of oil–gas compositional reservoir simulation problems is presented. The method is implemented within an automatic differentiation-based compositional flow simulator (Stanford’s Automatic Differentiation-based General Purpose Research Simulator, AD-GPRS). The development of adjoint procedures for general compositional problems is much more challenging than for oil–water problems due to the increased complexity of the code and the underlying physics. The treatment of nonlinear constraints, an example of which is a maximum gas rate specification in injection or production wells, when the control variables are well bottom-hole pressures, poses a particular challenge. Two approaches for handling these constraints are presented—a formal treatment within the optimizer and a simpler heuristic treatment in the forward model. The relationship between discrete and continuous adjoint formulations is also elucidated. Results for four example cases of increasing complexity are presented. Improvements in the objective function (cumulative oil produced) relative to reference solutions range from 4.2 to 11.6 %. The heuristic treatment of nonlinear constraints is shown to offer a cost-effective means for obtaining feasible solutions, which are, in some cases, better than those obtained using the formal constraint handling procedure.  相似文献   

9.
In the past ten years, time-lapse (4D) seismic has evolved as a standard way of monitoring reservoir performance. The method is now being used as good reservoir management practice to provide evidence of saturation changes within the reservoir at field scale. 4D provides a new piece of data describing the dynamic behavior of the reservoir fluids between the wells, often limited to small scale monitoring at the borehole scale. Thus, it provides sophisticated techniques for reservoir monitoring and management relying on the integration of geological models, static and dynamic properties of the reservoir rock, and detailed production and pressure field data.While 4D seismic data has been very successful in monitoring hydrocarbon production from clastic reservoirs, this work has focused on implementing 4D time lapse to monitor saturation changes in carbonate reservoirs and it’s capability to be used as enhanced oil recovery (EOR) tool that can help in enhancing the recovery factor for the filed and help to locate new drilling to sweep more oil out of the reservoir and locate the by-pass oil.The principal goal of this research was to detect the maximum change in seismic attributes (amplitude, acoustic impedance, travel time) that could occur as a result of oil production, water and gas injection in carbonate reservoirs by using time-lapse 4D seismic.  相似文献   

10.
11.
Well modeling plays an important role in numerical reservoir simulation. The main difficulty in well modeling is the difference in scale between the wellbore radius and well gridblock dimension used in the simulation. The Peaceman equation is widely used in reservoir simulation to match gridblock pressure to the local solution of the diffusivity equation describing the flow near the well. However, this approach was developed under the assumption of radial flow. At the same time, the well inflow equation can be solved within the Green’s function (GF) formalism which allows the solution to be obtained without the assumption of radial flow. The GF solution can be presented as a series over the eigenvalues of the Laplace differential operator. However, this series converges conditionally and its direct summation is time-consuming. In Posvyanskii et al. (2008), a method for fast summation of such a series was proposed and successfully applied for analyzing the pressure build up curves. In this paper, we adopt the same technique for calculating the well indices for horizontal, slanted and partially penetrated wells. Additionally, the role of different boundary conditions is considered. The semi-analytical expressions for well indices are obtained and compared to the solution of the Peaceman equation. It is shown that in some cases, the difference between these solutions can be significant. The use of the obtained expression in numerical flow simulation allows well inflow to be modeled with high accuracy even on a coarse grid.  相似文献   

12.
Through the rapid development of the watersheds in Turkey with projects developed by incorporated companies, a problem has arisen of how to operate a cascade reservoir system composed of state- and private sector-owned reservoirs in terms of the volume and timing of water releases to meet downstream water demands. This study presents a catchment-based optimization model based on inflow forecast with frequent updating for the integrated operation of hydropower plants under various sales methods. The model is formulated in terms of nonlinear programming (NLP) on a monthly basis for a 1-year period to assess the production strategies of the system reservoirs for that year. This model provides the basic constraints on the reservoir volume for daily and hourly optimization procedures. Forecasted flows are generated using seasonal autoregressive integrated moving average (ARIMA) models based on historical flow values. The proposed model is tested on the Garzan Hydropower System using historical, mean, and forecasted flow values. The results show that the integrated operation plan and improvement in the accuracy of inflow forecasts yield economic benefits as a consequence of optimal reservoir operation.  相似文献   

13.
Foaming injected gas is a useful and promising technique for achieving mobility control in porous media. The foam flow is influenced by the foam ability, stability, bubble size and the grain size of the porous media. In this study, the effects of two surfactants, their concentrations, foam quality (gas content) and the additive on the foam ability and stability are evaluated. The results show that the better ability and stability of foam can be obtained through regulating the parameters mentioned above. The permeability test indicates that the foam possesses a lower flow rate than the surfactant solution. Not only that, the conductivity discrepancy among three sands is also reduced when foam is present. The primary mechanism for foam flow in different type of unconsolidated sand is Jamin effect which depends on the foam ability and stability. Experimental determination of the foam distribution and morphology in heterogeneous pores, via two-dimension sand plate by means of stereoscopic microscope is carried out to explain the effect of foam size–bubble size relationship on Jamin effect. The results show that when the bubbles are adequately stable, the flow behavior (transfiguration and fracture) of foam is determined by the relationship between the foam size and the pore size. The resistances arising from transfiguration and fracture lead to different foam conductivity in three sands. The more decrease of discrepancy between medium and fine sand is caused by the fact that transfiguration is able to generate more resistance than fracture.  相似文献   

14.
The amount of hydrocarbon recovered can be considerably increased by finding optimal placement of non-conventional wells. For that purpose, the use of optimization algorithms, where the objective function is evaluated using a reservoir simulator, is needed. Furthermore, for complex reservoir geologies with high heterogeneities, the optimization problem requires algorithms able to cope with the non-regularity of the objective function. In this paper, we propose an optimization methodology for determining optimal well locations and trajectories based on the covariance matrix adaptation evolution strategy (CMA-ES) which is recognized as one of the most powerful derivative-free optimizers for continuous optimization. In addition, to improve the optimization procedure, two new techniques are proposed: (a) adaptive penalization with rejection in order to handle well placement constraints and (b) incorporation of a meta-model, based on locally weighted regression, into CMA-ES, using an approximate stochastic ranking procedure, in order to reduce the number of reservoir simulations required to evaluate the objective function. The approach is applied to the PUNQ-S3 case and compared with a genetic algorithm (GA) incorporating the Genocop III technique for handling constraints. To allow a fair comparison, both algorithms are used without parameter tuning on the problem, and standard settings are used for the GA and default settings for CMA-ES. It is shown that our new approach outperforms the genetic algorithm: It leads in general to both a higher net present value and a significant reduction in the number of reservoir simulations needed to reach a good well configuration. Moreover, coupling CMA-ES with a meta-model leads to further improvement, which was around 20% for the synthetic case in this study.  相似文献   

15.
In a recent paper, we developed a physics-based data-driven model referred to as INSIM-FT and showed that it can be used for history matching and future reservoir performance predictions even when no prior geological model is available. The model requires no prior knowledge of petrophysical properties. In this work, we explore the possibility of using INSIM-FT in place of a reservoir simulation model when estimating the well controls that optimize water flooding performance where we use the net present value (NPV) of life-cycle production as our cost (objective) function. The well controls are either the flowing bottom-hole pressure (BHP) or total liquid rates at injectors and producers on the time intervals which represent the prescribed control steps. The optimal well controls that maximize NPV are estimated with an ensemble-based optimization algorithm using the history-matched INSIM-FT model as the forward model. We compare the optimal NPV obtained using INSIM-FT as the forward model with the estimate of the optimal NPV obtained using the correct full-scale reservoir simulation model when performing waterflooding optimization.  相似文献   

16.
Randomized maximum likelihood is known in the petroleum reservoir community as a Bayesian history matching technique by means of minimizing a stochastic quadratic objective function. The algorithm is well established and has shown promising results in several applications. For linear models with linear observation operator, the algorithm samples the posterior density accurately. To improve the sampling for nonlinear models, we introduce a generalized version in its simplest form by re-weighting the prior. The weight term is motivated by a sufficiency condition on the expected gradient of the objective function. Recently, an ensemble version of the algorithm was proposed which can be implemented with any simulator. Unfortunately, the method has some practical implementation issues due to computation of low rank pseudo inverse matrices and in practice only the data mismatch part of the objective function is maintained. Here, we take advantage of the fact that the measurement space is often much smaller than the parameter space and project the prior uncertainty from the parameter space to the measurement space to avoid over fitting of data. The proposed algorithms show good performance on synthetic test cases including a 2D reservoir model.  相似文献   

17.
18.
在岩心观察的基础上,结合录井资料、重矿物分析及地震资料,对三塘湖盆地马朗凹陷西山窑组物源方向、沉积相展布及沉积模式进行研究。研究认为马朗凹陷西山窑组主要发育辫状河三角洲和湖泊相2种沉积相。西山窑组下段沉积时期,辫状河三角洲在湖盆北侧大面积分布,辫状河三角洲前缘的水下分流河道频繁改道、迁移,相互切割,叠置成厚20~50m连片分布的砂体。西山窑组上段沉积时期,马朗凹陷以湖泊相沉积为主,有小规模的辫状河三角洲发育,局部发育滩坝砂体。西山窑组沉积整体呈现出一个水进过程。分析化验数据表明,西山窑组砂岩以岩屑砂岩和长石岩屑砂岩为主,储集层胶结作用不强,以压实减孔为主,主要发育剩余粒间孔;储集层质量主要受控于沉积微相,水下分流河道砂体是最好的储集砂体。  相似文献   

19.
In this work, we consider a new model for flow in a multiporosity shale gas reservoir constructed within the framework of an upscaling procedure where hydraulic fractures are treated as (\(n-1\)) interfaces (\(n=2,3\)). Within this framework, the hydrodynamics is governed by a new pressure equation in the shale matrix which is treated as a homogenized porous medium composed of organic matter (kerogen aggregates with nanopores) and inorganic impermeable solid (clay, calcite, quartz) separated from each other by a network of interparticle pores of micrometer size. The solution of the pressure equation is strongly influenced by the constitutive response of the retardation parameter and effective hydraulic conductivity where the former incorporates gas adsorption/desorption in the nanopores of the kerogen. By focusing our analyses on this nonlinear diffusion equation in the domain occupied by the shale matrix, an optimization strategy seated on the adjoint sensitivity method is developed to minimize a cost functional related to gas production and net present value in a single hydraulic fracture. The gradient of the objective functional computed with the adjoint formulation is explored to update the controlled pressure drop aiming to optimize production in a given window of time. The combination of the direct approach and gradient-based optimization using the adjoint formulation leads to the construction of optimal production scenarios under controlled pressure decline in the well. Numerical simulations illustrate the potential of the methodology proposed herein in optimizing gas production.  相似文献   

20.
张玉  王亚玲  俞缙  张晓东  栾雅琳 《岩土力学》2018,39(Z1):105-112
泥岩作为油气储层常见复杂介质,在深部高温、高压环境下蠕变力学特性异常复杂,是引起套管损伤破坏的重要因素。以深部油气藏工程含膏质泥岩为研究对象,首先开展了高温为130 ℃、高围压为30 MPa、不同偏应力水平下多试样、单级加载三轴蠕变试验。该泥岩呈显著的时效力学特性,蠕变应力阀值较低,应力和持时对蠕变特性存在显著影响,低应力、长时间作用下泥岩亦呈现明显的稳态蠕变和加速蠕变破坏,且加速蠕变起始时间随应力增加呈指数降低关系。其次探讨了泥岩加速蠕变和强度损伤特性,提出了蠕变损伤起始时间概念,认为泥岩内部蠕变损伤变量可用指数函数予以描述。最后,基于蠕变损伤变量和起始时间,构建考虑泥岩加速蠕变的非线性改进Burgers蠕变模型,对蠕变参数开展辨识和分析,所选模型可准确地对深层膏质泥岩蠕变特性进行描述。研究成果旨在为深部泥岩油气藏套管工程长期稳定分析及安全评价提供可靠的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号