首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymeric tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption.
The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs from the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105°C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.  相似文献   

2.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

3.
Eighteen sites in South Carolina under investigation by the Superfund program were sampled to determine ambient ground water quality. Samples from 11 of 15 monitoring wells sampled with a bailer contained either caprolactam or Santowhite® (a registered trademark of the Monsanto Co.) or both organic compounds. A maximum of 540 μg/L of caprolactam and 780 μg/L of Santowhite was observed in the samples from the monitoring wells. None of the samples collected using dedicated submersible pumps at 28 other wells contained either compound.
Caprolactam is used in the manufacturing of nylon cord, and Santowhite is used as an antioxidant in latex gloves. Therefore, it was suspected that the nylon cord used to raise and lower the bailer and the latex gloves that were worn during sampling may have contributed the caprolactam and Santowhite to the sample.
An experiment using pH-adjusted distilled water and private well water revealed that the nylon cord and the latex gloves may contribute contaminants to ground water samples. Research is needed into the potential for caprolactam and Santowhite to interfere with laboratory analyses in addition to the potential for absorption of contaminants by nylon cord. Until additional information is available, alternative materials or sampling techniques should be considered to minimize the potential impact of nylon cord and latex gloves on the quality of bailed samples.  相似文献   

4.
Several detergent-washing/air-drying decontamination protocols were tested to determine their ability to remove residual contamination from two types of ground water sampling devices. We tested a relatively simply constructed device, a bailer, and a much more complex, and theoretically more difficult to decontaminate, bladder pump. The devices were decontaminated after sampling ground water that was contaminated with organics that varied in their hydrophobic nature and propensity to be sorbed by the materials in the devices. These studies showed that a hot-detergent wash, hot-water rinse, and hot-air drying protocol was effective.  相似文献   

5.
Many surveys of trace contaminants of seawater are based on the supposition that the situation is static. Little is known about seasonal fluctuations in the concentrations of these contaminants and less about the cause of this variation. Fluctuation in freshwater carrying metals or sediment that will trap contaminants, changes in movements of water masses in the sea, as well as the use of trace metals by marine organisms, are all contributory factors.  相似文献   

6.
Pump and treat has been successful in significantly reducing the volatile organic contaminant concentrations in ground water in Santa Clara Valley. California. The California Regional Water Quality Control Board. San Francisco Bay Region, currently oversees 61 sites in Santa Clara Valley with operating pump-and-treat systems, of which 42 sites have been extracting ground water since at least 1987. This review- evaluates the effects of ground water extraction on contaminant concentrations at 37 of those 42 sites. The evaluation focuses on trichloroethane, trichloroethene, and dichloroethane, as these were the most prevalent contaminants encountered at the sites. The majority of sites obtained greater than 90 percent reduction in maximum concentrations for one or more of the three contaminants. While only one of the 37 sites obtained maximum contaminant levels (MCL) for all contaminants, six of the sites included in the analyses reached MCLs for one or more of the sampled contaminants, and an additional seven of the sites are near MCLs for al least one contaminant. Our findings indicate that, while pump and treat successfully reduced maximum concentrations al most of the sites reviewed, successful attempts to reduce maximum contaminant concentrations to below MCLs are limited.  相似文献   

7.
Variations in concentrations of trichloroethylene and related compounds in ground water obtained from seven ground water samplers were used to compare the performance of three submersible pumps, a centrifugal pump, two peristaltic pumps, and a bailer. Two- and 4-inch diameter submersible pumps and a centrifugal pump produced samples whose trichloroethylene concentrations, on the average, did not differ significantly from each other. Ground water samples collected by using a peristaltic pump and silicone tubing had significantly lower trichloroethylene concentrations than samples from the submersible pumps. Concentrations of 1,2-dichloroethylene and trichloroethylene in ground water samples collected by using a bailer were indistinguishable from those in samples taken by a submersible pump when the concentrations were as much as 96 and 76 micrograms per liter, respectively, but were 15 and 12 percent lower when concentrations were as low as 29 and 23 micrograms per liter, respectively. Tests of different configurations of sampler placement in observation wells indicate that pump placement, rate of pumping, duration of pumping, and the uniformity of the vertical and lateral distribution of trichloroethylene in ground water near the well screen have a potentially significant influence on trichloroethylene concentrations in ground water samples and that these factors can have a greater effect than the type of sampler used.  相似文献   

8.
Geogenic arsenic in drinking water is a worldwide problem. For private well owners, testing (e.g., private or government laboratory) is the main method to determine arsenic concentration. However, the temporal variability of arsenic concentrations is not well characterized and it is not clear how often private wells should be tested. To answer this question, three datasets, two new and one publicly available, with temporal arsenic data were utilized: 6370 private wells from New Jersey tested at least twice since 2002, 2174 wells from the USGS NAWQA database, and 391 private wells sampled 14 years apart from Bangladesh. Two arsenic drinking water standards are used for the analysis: 10 µg/L, the WHO guideline and EPA standard or maximum contaminant level (MCL) and 5 µg/L, the New Jersey MCL. A rate of change was determined for each well and these rates were used to predict the temporal change in arsenic for a range of initial arsenic concentrations below an MCL. For each MCL and initial concentration, the probability of exceeding an MCL over time was predicted. Results show that to limit a person to below a 5% chance of drinking water above an MCL, wells that are ½ an MCL and above should be tested every year and wells below ½ an MCL should be tested every 5 years. These results indicate that one test result below an MCL is inadequate to ensure long-term compliance. Future recommendations should account for temporal variability when creating drinking water standards and guidance for private well owners.  相似文献   

9.
The presence of artificial sweeteners in environmental samples is increasingly used to detect wastewater (and recently landfill leachate) in rivers, lakes and groundwater. Through routine laboratory quality assurance/quality control procedures, it was discovered that some syringe‐tip filters leach saccharin when used to process water samples. We subsequently tested several brands of filters to determine if they leached any of the four common artificial sweeteners analyzed in environmental samples, acesulfame, saccharin, cyclamate, and sucralose. Of the six types of filters tested, only one brand was a source of artificial sweeteners and the only artificial sweetener found was saccharin. The source of the saccharin in the filters is unknown but it is likely the result of some step in the manufacturing process. The saccharin was typically removed from these filters using a distilled water rinse of 13 mL or less. As a precaution, filters should be pre‐tested for the presence of saccharin and/or filters should be flushed with distilled water or sample prior to the collection of water samples for artificial sweetener analyses.  相似文献   

10.
Laboratory experiments were conducted to measure the extent to which trace concentrations of radioactive materials would sorb on well construction materials and to assess the rapidity with which sorption would occur. The radionuclides employed in these studies were tritium, Cs-137, and Co-57, Solutions with trace concentrations of these radionuclides were contracted with casings of PVC, fiberglass-epoxy, stainless steel, carbon steel, and steel rods coated wtih expoy. The PVC showed no interaction with the tritium or Cs-137 during contact times of two hours to these weeks; however, it did sorb Co-57. The fiberglass-epoxy also interacted only with the cobalt. The stainless steel sorbed cesium and cobalt. The carbon steel (or the ferric hydroxide forming on its surface) also sorbed both cesium and cobalt. The epoxy-coated steel rods did not interact measurably with day of the radio-nuclides so long as the coating was intact. The sorption reactions generally were apparent after a few days of contact: in the case of carbon steel, they were detectable in a few hours.  相似文献   

11.
Soil-pore water sampling by suction lysimeters monitors the fate of soil contaminants as a function of depth and time. However, sampling campaigns must be planned to most effectively monitor the migration of contaminants with a minimum expenditure of resources. The vertical migration of pesticides was studied at two sites treated with systemic s-triazine herbicides and equipped with suction lysimeters. The measured concentrations were compared with those calculated by a simulation model. This modeling was based on the processes that control the transport and fate of pesticide within the soil. The usefulness of such a tool was demonstrated by the good approximation obtained for pesticide concentrations and arrival times. Moreover, the significant spatial variability of concentrations observed justifies the use of a stochastic approach in modeling that takes into account the spatial variability of soil parameters. Also, the rapid transformation of herbicides observed in unsaturated soil zones demonstrates the importance of taking into account the sum of the toxic residues when evaluating the fate of s-triazines in soil.  相似文献   

12.
In military out of area missions of the Bundeswehr, it can be necessary to produce drinking water even from highly polluted surface waters containing a variety of organic, inorganic, and microbiological contaminants. Thus, mobile drinking water purification systems must be able to remove such contaminants as far as possible to meet the requirements of the German and European drinking water regulation/directive. Presently, two novel drinking water purification units applying membrane filtration undergo intensive long‐term trials carried out by the Bundeswehr. If these trials positively proof the functionality of these units and their ability to remove all possible contaminants they shall substitute so far available devices which use large amounts of chemicals and charcoal filtration for water purification.In the course of a research project, the functionality of the new devices and their efficacy to remove high amounts of algae, microbes, and organic and inorganic pollutants are additionally tested in “worst‐case” field studies. In September 2000, the first mobile drinking water purification unit was tested at the Teltowkanal in Berlin, Germany.This canal was chosen because it carries high burdens of municipal sewage effluents. The results from the fatigue test confirmed the ability of the water purification unit to reduce the concentrations of all contaminants meeting the maximum tolerance levels set by the German/European drinking water regulation.The pre‐filtration device was very effective in removing algae and solid particles to protect the membranes from clogging and to enable an almost maintenance‐free operation. Residues of pharmaceuticals and some other organic contaminants have almost totally been removed from the surface water where they were detected at individual concentrations up to the μg/L‐level.  相似文献   

13.
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions.  相似文献   

14.
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water.
Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.  相似文献   

15.
Pesticides are used extensively in the finfish aquaculture industry to control sea lice infestations on farmed salmon. The most prevalent method of use is to enclose a net pen with an impervious tarpaulin and mix a pesticide solution within that enclosure. After treatment for short periods (1 h) the pesticide solution is released to the environment. Concerns have been raised that there is a potential risk to non-target aquatic organisms from those releases. The fate of dispersing pesticide solutions was measured after six simulated treatments in the Lower Bay of Fundy, New Brunswick. Three simulated treatments were done with azamethiphos and three with cypermethrin. Rhodamine dye was added to all pesticide solutions in order to facilitate tracking of the dispersing plume through real-time measurements of dye concentrations by a flow-through fluorometer coupled with a differential global positioning system (DGPS). Water samples were obtained from within the plumes at various times after release and analysed for pesticide content and toxicity to a benthic amphipod Eohaustorius estuaris. Dye concentrations were detectable for time periods after release which varied from 2 to 5.5 h. Distances travelled by the dye patches ranged from 900 to 3000 m and the dye concentrations at the final sampling period were generally 1/200-1/3000 the pre-release concentrations and cypermethrin concentrations were generally 1/1000-1/2000 the pre-release concentrations. Cypermethrin concentrations in water samples were closely correlated with dye concentrations, indicating that dye analyses were an accurate surrogate for cypermethrin concentrations. Most samples taken after the releases of azamethiphos were not toxic to test organisms in 48 h exposures and none were beyond 20 min post-release. By contrast, almost all samples taken after the release of cypermethrin, even up to 5-h post-release, were toxic. Data indicate the potential to cause toxic effects over areas of hectares from a single release of cypermethrin.  相似文献   

16.
The removal of Malachite green (MG) from aqueous solutions by cross‐linked chitosan coated bentonite (CCB) beads was investigated and the CCB beads were characterized by Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X‐ray diffraction (XRD) analysis. Solubility and swelling tests were performed in order to determine the stability of the CCB beads in acidic solution, basic solution and distilled water. The amount of MG adsorbed was shown to be influenced by the initial pH of the solution, contact time and the initial MG concentration. A kinetic study indicated that a pseudo‐second‐order model agreed well with the experimental data. From the Langmuir isotherm model, the maximum adsorption capacity of MG was found to be 435.0 mg g–1. Desorption tests were carried out at different concentrations of EDTA, H2SO4 and NaOH. However, all desorbing solutions showed zero recovery of MG at all concentrations.  相似文献   

17.
Seiler RL 《Ground water》2004,42(3):446-455
Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter progeny is attained in pressure tanks overnight.  相似文献   

18.
This report examines sorption of low ppb levels of organic solutions by polytetra- fluoroethylene (PTFE), rigid polyvinyl chloride (PVC), and stainless steel 304 and 316 well casings. Nineteen organics were selected, including several munitions and chlorinated solvents. Compounds were selected to offer a range of physical properties, such as solubility in water, octanol/water partition coefficient, and molecular structure. When these results were compared with the results from a similar study conducted at ppm levels, the rate and extent of sorption by PTFE and PVC were the same as seen previously for almost all analytes. There were no losses of any compounds associated with stainless steel. At these low levels (ppm and ppb), the rate of diffusion within the polymer (PVC and PTFE) is independent of concentration. Only with PTFE are the rates rapid enough to be of concern when monitoring for some contaminants in ground water. Tetrachloroethylene was the compound PTFE sorbed the most rapidly. The study showed that PVC well casings are suitable for monitoring low levels (ppm and ppb) of organics.  相似文献   

19.
The U.S. EPA 2000 Radionuclide Rule established a maximum contaminant level (MCL) for uranium of 30 µg/L. Many small community water supplies are struggling to comply with this new regulation. At one such community, direct push (DP) methods were applied to obtain hydraulic profiling tool (HPT) logs and install small diameter wells in a section of alluvial deposits located along the Platte River. This work was conducted to evaluate potential sources of elevated uranium in the Clarks, Nebraska drinking water supply. HPT logs were used to understand the hydrostratigraphy of a portion of the aquifer and guide placement of small diameter wells at selected depth intervals. Low-flow sampling of the wells provided water quality parameters and samples for analysis to study the distribution of uranium and variations in aquifer chemistry. Contrary to expectations, the aquifer chemistry revealed that uranium was being mobilized under anoxic and reducing conditions. Review of the test well and new public water supply well construction details revealed that filter packs extended significantly above the screened intervals of the wells. These filter packs were providing a conduit for the movement of groundwater with elevated concentrations of uranium into the supply wells and the community drinking water supply. The methods applied and lessons learned here may be useful for the assessment of unconsolidated aquifers for uranium, arsenic, and many other drinking water supply contaminants.  相似文献   

20.
Sorptive removal of Ni(II) from electroplating rinse wastewaters by cation exchange resin Dueolite C 20 was investigated at the temperature of 30°C under dynamic conditions in a packed bed. The effects of sorbent bed length 0.1–0.2 m, fixed flow rate 6 dm3 min?1, and the initial rinse water concentration (C0) 53.1 mg L?1 on the sorption characteristics of Dueolite C 20 were investigated at an influent pH of 6.5. More than 94.5% of Ni(II) was removed in the column experiments. The column performance was improved with increasing bed height and decreasing the flow rate. The Thomas, Yoon–Nelson, Clark, and Wolborska models were applied to the experimental data to represent the breakthrough curves and determine the characteristic design parameters of the column. The sorption performance of the Ni(II) ions through columns could be well described by the Thomas, Yoon–Nelson, and Wolborska models at effluent‐to‐influent concentration ratios (C/C0) >0.03 and <0.99. Among the all models, the Clark model showed the least average percentage time deviation. The sorptive capacity of electroplating rinse water using Ni(II) was found to be 45.98 mg g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号