首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
张瑛  肖安  马力  王欢  马中元  周芳 《气象》2011,37(9):1060-1069
利用WRF模式与4个陆面过程的耦合,对2010年6月19—20日的暴雨过程进行了数值模拟,并分析陆面过程对暴雨强度和范围的敏感性。结果显示:WRF耦合4个陆面过程模拟的雨带和实况分布一致,均为东西向的雨带形状,且均预报出与实况资料相似的强降水中心。在无陆面方案情况下,强降水中心的位置、范围、强度等都发生明显变化。另外地表径流预报量和降水趋势表现一致,由于土壤含水量趋于饱和,多余的降水分配给地表径流,这种剧增的地表径流也是洪水暴涨、水位上升的重要原因。在较湿的土壤状况下,由于净辐射增长,有利于产生厚度更小的边界层高度以及更大的地表向上潜热通量,这也是导致本次降水过程异常增幅的一个重要原因。  相似文献   

2.
3.
Hydrological processes exert enormous influences on the land surface water and energy balance, and have a close relationship with human society. We have developed a new hydrological runoff parameterization called XXT to improve the performance of a coupled land surface-atmosphere modeling system. The XXT parameterization, which is based upon the Xinanjiang hydrological model and TOPMODEL, includes an optimized function of runoff calculation with a new soil moisture storage capacity distribution curve(SMSCC). We then couple XXT with the Global/Regional Assimilation Prediction System (GRAPES) and compare it to GRAPES coupled with a simple water balance model (SWB).For the model evaluation and comparison, we perform 72-h online simulations using GRAPES-XXT and GRAPES-SWB during two torrential events in August 2007 and July 2008, respectively. The results show that GRAPES can reproduce the rainfall distribution and intensity fairly well in both cases. Differences in the representation of feedback processes between surface hydrology and the atmosphere result in differences in the distributions and amounts of precipitation simulated by GRAPES-XXT and GRAPES-SWB. The runoff simulations are greatly improved by the use of XXT in place of SWB, particularly with respect to the distribution and amount of runoff. The average runoff depth is nearly doubled in the rainbelt area, and unreasonable runoff distributions simulated by GRAPES-SWB are made more realistic by the introduction of XXT. Differences in surface soil moisture between GRAPES-XXT and GRAPES-SWB show that the XXT model changes infiltration and increases surface runoff. We also evaluate river flood discharge in the Yishu River basin. The peak values of flood discharge calculated from the output of GRAPES-XXT agree more closely with observations than those calculated from the output of GRAPES-SWB.  相似文献   

4.
孙岚  吴国雄  孙菽芬 《气象学报》2000,58(2):179-193
利用陆面过程模式 SSi B与 IAP/LASG发展的 L9R1 5AGCM的耦合 1 0 a积分试验 ,研究了全球尺度大气与地表的水分和能量交换以及陆地与大气环流和气候的相互作用。模拟表明 :SSi B模式可模拟出陆地上较为真实的表面通量及其日变化 ,较好地定量描述土壤 -植被 -大气连续体系 ( SPAC)中能量和水分的传输过程。因此 ,将其引入气候模式中能够模拟出比 CTL- AGCM更合理的气候平均状态、水汽分布以及水汽输送的气候特征 ,特别是亚洲夏季风水汽输送独特的地域性 ,再现了大气环流 ,尤其是陆面气候的基本特征。并指出 ,陆面过程参数化的引进及其陆面状况的变化显著地改善了全球陆地上的水分平衡状况。利用改进的再循环降水模式 ,进一步研究了陆面过程参数化明显改进降水模拟的物理机制。指出全球陆地 ,特别是盛夏北半球干旱、半干旱地区的再循环降水率明显减小 ,与陆面上表面潜热通量的显著减小区一致 ,从而克服了许多未耦合陆面过程的 AGCMs因对地表水过程非常简单地参数化导致的普遍存在着整个陆地降水偏高 ,改善了全球陆地上的水分平衡状况。因此 ,在充分耦合的陆气环流模式中模拟的降水分布与实况接近。  相似文献   

5.
This study examines the impact of a new land-surface parameterization and a river routing scheme on the hydrology of the Amazon basin, as depicted by the NASA/Goddard Institute of Space Studies (GISS) global climate model (GCM). The more physically realistic land surface scheme introduces a vegetation canopy resistance and a six-layer soil system. The new routing scheme allows runoff to travel from a river's headwater to its mouth according to topography and other channel characteristics and improves the timing of the peak flow. River runoff is examined near the mouth of the Amazon and for all of its sub-basins. With the new land-surface parameterization, river run-off increases significantly and is consistent with that observed in most basins and at the mouth. The representation of the river hydrology in small basins is not as satisfactory as in larger basins. One positive impact of the new land-surface parameterization is that it produces more realistic evaporation over the Amazon basin, which was too high in the previous version of the GCM. The realistic depiction of evaporation also affects the thermal regime in the lower atmosphere in the Amazon. In fact, the lower evaporation in some portions of the basin reduces the cloudiness, increases the solar radiation reaching the ground, increases the net radiation at the surface, and warms the surface as compared to observations. Further GCM improvement is needed to obtain a better representation of rainfall processes.  相似文献   

6.
具有Horton及Dunne机制的径流模型在VIC模型中的应用(英)   总被引:20,自引:0,他引:20  
地表径流主要由蓄满(Dunne)和超渗产流(Horton)机制产生;土壤性质的空间变异性、前期土壤水、地形及降水的空间变异性导致不同的径流机制。在研究区域或模型网格内,蓄满产流及超渗产流可能同时出现,缺乏考虑任何一种机制以及土壤性质的次网格空间变率可能导致地表径流的过高或过低估计,从而影响土壤水的计算。利用Philip入渗公式用于时间压缩逼近(TCA)给出了一种径流参数化方法,该方法可以动态实现模型网格中的Horton及Dunne产流机理,它考虑了土壤空间变异性对Horton和Dunne径流的影响。该径流模型应用到基于水文原理的陆面过程模型VIC,在淮河流域及美国宾西法尼亚州的一个流域进行了测试,结果表明:新的参数化方法对地表径流和土壤水分含量的分配起着重要作用,对于改进径流和土壤水的模拟有重要意义。  相似文献   

7.
区域气候模式(RegCM2)与水文模式耦合的数值试验   总被引:12,自引:2,他引:12  
建立不均匀的地表径流算法,修改RegCM2的径流方案,设计了一个适合与气候模式RegCM2耦合、能模拟水文站流量的汇流模式,模拟了1998年6、7、8月降水的空间分布,分析了该径流方案对降水、地表热量通量、地表径流、土壤湿度产生的影响。结果表明:(1)该方案在模拟1998年长江流域降水空间分布上有一定的合理性,在一定程度上改善了降水量的模拟,其影响大致是总降水量的10%;(2)地表径流方案改变了地面向大气输送的热量通量,这种作用随时间发生变化,这种变化与地表水分的再分配有关;(3)本方案计算的土壤渗透率较强,在暴雨初期,产生径流较少,而在暴雨后期土壤湿度增大,产生的地表径流较大,这一点更符合洪水形成的特点;(4)水文一气候耦合模式模拟了两个长江水文站的流量,模拟值基本反映了实测值的变化趋势,也表明耦合模式基本能反映1998年夏季长江流域大暴雨期间的地表水文过程。  相似文献   

8.
A coupled model of RAMS3b(Regional Atmospheric Modeling System,Version 3b) and LSPM(a land surface process model),in which some basic hydrological processes such as precipitation,evapotranspiration.surface runoff,infiltration and bottom drainage are included,has been established.With the coupled model,we have simulated the response of soil to the sever eweather process which caused the disastrous flood in north italy during 4-7.November,1994,simultaneously compared with the observation and the original RAMS3b,which has a soil and vegetation parameterization scheme(hereafter,SVP) emphasizing on the surface energy fluxes,while some hydrological processes in the soil are not described clearly.The results show that the differences between coupling LSPM and SVP exist mainly in the response of soil to the precipitation.The soil in the SVP never saturates under the strong input of precipitation,while the newly coupled model seems better,the soil has been saturated for one day or more and causes strong surface runoff,which constitutes the flood.Further sensitivity experiments show that the surface hydrological processes are very sensitive to the initial soil moisture and soil type when we compared the results with a relatively dry case and sandy soil.The coupled model has potentiality for simulation on the interaction between regional climate and land surface hydrological processes,and the regional water resources research concerning desertification,drought and flood.  相似文献   

9.
GRAPES NOAH-LSM陆面模式水文过程的改进及试验研究   总被引:3,自引:1,他引:2  
王莉莉  陈德辉 《大气科学》2013,37(6):1179-1186
土壤含水量的计算影响着陆面过程的能量平衡和水量平衡,是陆面模式的核心计算要素之一。目前,GRAPES_Meso模式采用的NOAH-LSM(Noah-Land Surface Model)陆面模式既不能有效地表达径流产源面积的变动情况,也不能完整描述水文循环过程。本次试验针对以上问题对其进行了改进:(1)加入蓄水容量曲线,考虑网格内产流面积的变化及土壤含水量的不均匀性;(2)加入汇流模式,以考虑水平二维水分再分配,提高模式对径流和流量模拟能力。选取2008年8月至9月降水进行模拟试验,研究陆面水循环过程对近地面气象要素的影响。结果表明:改进后的模式模拟土壤湿度、2 m温度等近地面气象要素更接近观测值,并最终对降水量以及降水落区也产生了一定的影响。  相似文献   

10.
A GCM land surface scheme was used, in off-line mode, to simulate the runoff, latent and sensible heat fluxes for two distinct Australian catchments using observed atmospheric forcing. The tropical Jardine River catchment is 2500 km2 and has an annual rainfall of 1700 mm y–1 while the Canning River catchment is 540 km2, has a Mediterranean climate (annual rainfall of 800 mm y–1) and is ephemeral for half the year. It was found that the standard version of a land surface scheme developed for a GCM, and initialised as for incorporation into a GCM, simulated similar latent and sensible heat fluxes compared to a basin-scale hydrological model (MODHYDROLOG) which was calibrated for each catchment. However, the standard version of the land surface scheme grossly overestimated the observed peak runoff in the wet Jardine River catchment at the expense of runoff later in the season. Increasing the soil water storage permitted the land surface scheme to simulate observed runoff quite well, but led to a different simulation of latent and sensible heat compared to MODHYDROLOG. It is concluded that this 2-layer land surface scheme was unable to simulate both catchments realistically. The land surface scheme was then extended to a three-layer model. In terms of runoff, the resulting control simulations with soil depths chosen as for the GCM were better than the best simulations obtained with the two-layer model. The three-layer model simulated similar latent and sensible heat for both catchments compared to MODHYDROLOG. Unfortunately, for the ephemeral Canning River catchment, the land surface scheme was unable to time the observed runoff peak correctly. A tentative conclusion would be that this GCM land surface scheme may be able to simulate the present day state of some larger and wetter catchments but not catchments with peaky hydrographs and zero flows for part of the year. This conclusion requires examination with a range of GCM land surface schemes against a range of catchments. Received: 9 June 1995 / Accepted: 4 April 1996  相似文献   

11.
陆面特征量初始扰动的敏感性及集合预报试验   总被引:2,自引:1,他引:1  
王洋  曾新民  葛洪彬  张长卫 《气象》2014,40(2):146-157
文章利用中尺度模式Weather Research and Forecasting Model(WRF)3.2.1版本及National Centers for Environmental Prediction(NCEP)分析资料,研究了陆面变量(土壤湿度、土壤温度)和陆面参数(植被覆盖率)初始场随机扰动对长江中下游暴雨预报的影响并进行了集合预报试验。试验结果表明,短期暴雨过程对陆面变量(参数)扰动是敏感的;陆面变量(参数)初始场扰动影响降水的时间尺度小于10 h甚至可以小于6 h。从影响机理上来看,陆面变量(参数)扰动首先改变地表的潜热通量和感热通量,而地表通量的改变会通过陆气相互作用对局地大气的温、压、湿、风产生较大影响,从而对暴雨的强度和落区产生较大影响。集合预报结果表明,利用陆面变量(参数)扰动制作集合预报,预报的集合平均结果要好于控制预报的结果,且比集合成员稳定可靠,降水概率预报可以提供一些有用的信息,对预报强降水有一定的指示意义。在初值集合预报中,以这些参数或变量的扰动来引进集合成员是十分有意义的。  相似文献   

12.
陆面过程模式的改进及其检验   总被引:11,自引:0,他引:11  
文中对陆面过程模式 (BATS)进行了改进 ,改进后的模式能较好地模拟地表物理量的年、季和日变化 ,它有两方面的特点 :采用热扩散方程模拟 7层土壤温度 ,模拟的温度可与实测值进行比较 ;在BATS的地表径流方案中 ,考虑了空间不均匀性的一般地表径流 (GVIC)过程 ,研究结果表明 :⑴模式能很好地模拟各层土壤温度的年、季和日变化。冬季土壤温度下层高于上层 ,而在夏季上层高于下层 ,这种上下层温度的转换时间大约在 4和 10月份 ,这与实测土壤温度的年变化非常一致。较为准确地模拟了各层土壤温度日变化的时滞效应。⑵用南京和武汉站的资料 ,将BATS地表径流方案模拟的地表水分分量与GVIC方案进行比较 ,BATS地表径流方案模拟的地表水分分量 ,与总水量的平衡相差较大 ,而GVIC模拟的效果相对较好 ,地表总水量基本上与降水总量达到了平衡  相似文献   

13.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCC Regional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce the location and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainy season in the summer of 1998 over China can be divided into 7 episodes,including the pre-summer rainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,short appearance of North China rain season and the retreat of seasonal rain belt,the second Meiyu season over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valley and the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC is over-estimation of precipitation amounts.The regions with large latent heat flux,upper soil moisture and total runoff are located in the rainy area and move with the simulated rain belt during the different episodes.On the contrary,the regions with small sensible heat flux are located in the simulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

14.
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process parameterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.  相似文献   

15.
将任一中尺度区域的平均瞬间径流率考虑为区域平均降水量和地表土壤层水分渗透垦的余项.根据降水量在地理空间上分布的实测资料拟合其空间概率密度函数(PDF),并结合土壤入渗物理过程的数学描述及其经验公式,精确估计出地表土壤渗透率及其空间分布,由此建立区域地表径流率的统计-动力学估计方案.换言之,区域内地表产流率可视为区域平均降水量与区域平均的土壤下渗量之差值,而区域内土壤的平均下渗量又町分为非饱和区和饱和区两部分的下渗量来分别计算.就陆面水分循环的物理过程而言,地表入渗现象是在一定的下垫面特性基础上,由一定的水分供应源而形成的.根据大气降水向地表层输送水分的物理过程,在满足植被表层覆盖需水(截流水)和地表层土壤人渗水基础上,多余的降水量才会形成地表径流.凶此,推求地表产流率的主要关键在于地表土壤层需水量.为此奉文根据土壤水分通量方程推导出水分入渗公式.又从描述土壤水分和降水的空间PDF出发,推导出非均匀土壤含水量及降水气候强迫所形成的次网格尺度区域平均径流率计算公式.利用长江三角洲地区1996年降水量和土壤特性等实测资料建立区域平均地表径流率的估计公式,并对其影响凶素进行敏感性试验.结果表明,该方法与用Mosaic方法计算的区域径流率(或产流率)结果十分接近.由此可见,该文提出的降水气候强迫下非均匀地表区域平均径流的这种统计-动力参数化方案,具有相当的可靠性与可行性.  相似文献   

16.
A coupled model of RAMS3b(Regional Atmospheric Modeling System,Version 3b)andLSPM(a land surface process model),in which some basic hydrological processes such asprecipitation,evapotranspiration.surface runoff,infiltration and bottom drainage are included,has been established.With the coupled model,we have simulated the response of soil to the severeweather process which caused the disastrous flood in north italy during 4-7.November,1994,simultaneously compared with the observation and the original RAMS3b,which has a soil andvegetation parameterization scheme(hereafter,SVP)emphasizing on the surface energy fluxes,while some hydrological processes in the soil are not described clearly.The results show that the differences between coupling LSPM and SVP exist mainly in theresponse of soil to the precipitation.The soil in the SVP never saturates under the strong input ofprecipitation,while the newly coupled model seems better,the soil has been saturated for one dayor more and causes strong surface runoff,which constitutes the flood.Further sensitivityexperiments show that the surface hydrological processes are very sensitive to the initial soilmoisture and soil type when we compared the results with a relatively dry case and sandy soil.The coupled model has potentiality for simulation on the interaction between regional climateand land surface hydrological processes,and the regional water resources research concerningdesertification,drought and flood.  相似文献   

17.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCCRegional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce thelocation and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainyseason in the summer of 1998 over China can be divided into 7 episodes,including the pre-summerrainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,shortappearance of North China rain season and the retreat of seasonal rain belt,the second Meiyuseason over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valleyand the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC isover-estimation of precipitation amounts.The regions with large latent heat flux,upper soilmoisture and total runoff are located in the rainy area and move with the simulated rain belt duringthe different episodes.On the contrary,the regions with small sensible heat flux are located in thesimulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

18.
施洪波  张英娟 《气象科技》2014,42(6):1023-1027
利用国家气候中心全球海气耦合模式CGCM_NCC的输出结果驱动区域气候模式RegCM_NCC对华北地区1991—2010年冬季气温和降水进行了数值回报试验,并采用国家气候中心的业务预报评分(P)等5个评估参数对模式的回报结果进行了评估分析。结果表明:RegCM_NCC回报的华北地区20年冬季气温的P评分多年平均值为70.4分,其中大部分年份平均气温的P评分在60分以上,80分以上的有11年,11年的预报相对于随机预报和气候预报有正技巧;20年冬季降水的P评分多年平均值为66.3分,13年冬季降水的P评分在60分以上,在80分以上的有5年,8年的预报相对于随机预报有正技巧,有11年的预报相对于气候预报有正技巧。冬季Nino3.4区海温距平为负和东大西洋-俄罗斯西部型遥相关指数为负,均有利于回报的华北冬季气温P评分提高。  相似文献   

19.
The state-of-the-art WRF model is used to investigate the impact of the antecedent soil moisture on subsequent summer precipitation during the East Asian summer monsoon (EASM) period. The control experiment with realistic soil moisture condition can well reproduce the seasonal pattern from low- to high- atmosphere, as well as the spatial distribution of precipitation belt in East China. Compared with the control experiment, the sensitivity experiment in which the initial soil moisture is reduced generates more precipitation along the East China Sea, and less rainfall over both Central and South China. This suggests that the effect of initial soil moisture on monsoonal precipitation in East China is regionally dependent. The influence on precipitation is mostly attributed to the change in precipitation from mid July to late August. The initial soil moisture condition plays a role in changing the seasonal pattern and atmospheric circulation due to the weak heating and geopotential gradient, leading to a reduction in southeasterly flow and moisture flux from South China Sea. The changes between DRY and CTL runs result in reduced southerly wind over the ocean (south of ˜25 °N) and enhanced northerly wind over the land (north of ∼25 °N). The temperature and associated circulation changes due to drier initial soil moisture anomaly result in reduced southerly winds over East China, and therefore a weakened EASM system. The averaged moisture flux decreases significantly over Central China but increases along the East China Sea. In addition, the drier soil moisture perturbation exerts an effect on suppressing (enhancing) vertical velocity over Central China (along the East China Sea), thus leading to more (less) cloud water and rain water. Therefore, the influence of soil moisture exerts an opposite impact on surface precipitation between these two regions, with more and less accumulation rainfall in Central China and along the East China Sea, respectively.  相似文献   

20.
The performance of the Canadian Land Surface Scheme (CLASS) when coupled to the CCCma third generation general circulation model is evaluated in an AMIP II simulation. Our primary aim is to understand how CLASS processes moisture and to compare model estimates of moisture budget components with observations. The modelled mean annual precipitation and runoff, and their latitudinal structures, compare well with observations although some discrepancies remain in the simulation of regional values of these quantities. The amplitude and phase of the first harmonic of the precipitation annual cycle also compares well with observations although less well over regions of sparse precipitation and/or high topography. In the model, the canopy plays a major role in processing moisture at the land surface indicating the importance of vegetation in climate. The canopy intercepts a large fraction of the precipitation and provides the medium for returning much moisture back to the atmosphere as evapotranspiration. Though important locally, the snow moisture reservoir plays a relatively minor role in the global moisture budget. It acts primarily as a storage and delay mechanism with winter precipitation released to the ground reservoir on melting. The ground moisture reservoir also plays a major role and processes a similar amount of moisture as the canopy, although in a different manner. The globally averaged model runoff compares well with observation-based estimates, although the model partitioning into surface runoff and drainage does not agree particularly well with the single available observation-based estimate. How moisture is processed at the land surface serves as a basis for model intercomparison and for understanding the modelled moisture budget and its variation and changes with climate change. Only the most basic quantities (precipitation, runoff, and partitioning of runoff into surface runoff and drainage) may be compared with observation-based estimates, however, and the establishment of more complete moisture budget remains an important need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号