首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
<正>Soil and water resources are fundamental for human beings.Understanding the status and the evolution of regional water and soil resources is the prerequisite for their sustainable management.China is severely constrained by water and soil resources which are subject to soil forming processes under different natural factors such as climate and relief,and also influenced by diversified landuse histories and intensities.Quality and security of water and soil resources are therefore influenced by both natural and anthropogenic processes.  相似文献   

2.
Spatial heterogeneity of the driving forces of cropland change in China   总被引:9,自引:2,他引:7  
Along with the increasing problems of rapid popu-lation increase, resources scarcity and environment deterioration, the interaction between human devel-opment and natural environment changes, especially the Land-Use/Land-Cover, LUCC issue is becoming a frontier and hot field[1], in which investigation on the mechanisms of land use change is one of the three core issues. Deficient natural resources, in particular the shortage of cropland resource in China, are the important constraints to Ch…  相似文献   

3.
This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled "The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River". All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic. Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.  相似文献   

4.
The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake(pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated.The results,in the chemical composition,in the mineralogy of the sediment and in the material as obtained from sediment traps,show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin.The sedimentation rate calculated for the lake(2.5×10-2 mg m-2 day-1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world.The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes,and the main fraction of P was found associated with organic matter.There was no control by Fe or Al on P,because both are in solution at pH < 3.0.It was concluded that changes in the natural input of nutrients(derivatives of Copahue volcano fluid,the discharge of sewage,or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake.Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed.The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0.It was concluded that changes in the natural input of nutrients due to:1) the volcanic fluids,2) the increase in sewage charges,or 3) surface runoff upstream,maintain a high trophic state with high concentrations of dissolved P and N-NH4+,although the threshold of neutral pH in the lake is exceeded.This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.  相似文献   

5.
Tritium concentrations are used to trace water circulation in the Urumqi and Turfan basins in the Xinjiang, western China. Tritium analyses were made for 77 water samples of river waters, groundwaters, spring waters, lake waters and glacier ice collected in summers in 1992 and 1994. The tritium concentrations in the waters are in a wide range from 0 to 125 TU, most of which are considerably high compared with those of most waters in Japan, because tritium levels in precipitation in the area are over ten times as high as those in Japan. River waters originating in glacier regions contain melt glacier, the proportion of which is over 0.5 to river water. The mean resi-dence time of circulating meteoric water in the mountain regions is estimated to be about 15 years. Most groundwaters and spring waters in the flat regions are mainly derived from river waters originating in glacier regions. The groundwater of greatest tritium concentrations in wells in Urumqi City is derived from Urumqi River about 25 years ago. It takes several ten years for river water to pass the underground to many springs. Some groundwaters and spring waters have taken a long time more than 40 years to travel under the ground. Enrichment of tritium in lake water by evaporation is considered to estimate the contribution of groundwater flow to the recharge of lake. Various contributions of groundwater to lakes are inferred for the various type of salinity in closed or semi-closed lakes. The inflow rates of groundwater to salt lakes are small as against fresh water lakes.  相似文献   

6.
Cyanobacterial dominance in lakes has received much attention in the past because of the great success and frequent bloom formation in lakes of higher trophic levels. In this paper underlying mechanism of cyanobacterial dominance are analyzed and discussed using both original and literature data from various shallow mixed and deep stratifying lakes from temperate and (subtropical regions. Examples include all four ecotypes of cyanobacteria sensu MUR et al. (1993), because their behavior in the water column is entirely different.Colony forming species (Microcystis) are exemplified from the large shallow Lake Taihu, China. Data from a shallow urban lake, Alte Donau in Austria are used to characterize well mixed species (Cylindrospermopsis) while stratifying species (Planktothrix) are analyzed from the deep alpine lake Mondsee. Nitrogen fixing species (Aphanizomenon) are typified from a shallow river-run lake in Germany.Factors causing the dominance of one or the other group are discussed as well as consequences for restoration measures. Existing knowledge on cyanobacterial dominance is summarized.  相似文献   

7.
Huang  Feifan  Zhang  Ke  Huang  Shixin  Lin  Qi 《中国科学:地球科学(英文版)》2021,64(10):1735-1745
Macrophytes play important roles in maintaining ecosystem health and stability of shallow lakes. Better understanding of their long-term dynamics has important theoretical and practical significance for both lake ecosystem restoration and eutrophication control. However, the knowledge about the historical status and changing patterns of macrophytes in China's shallow lakes is still controversial and lacks systematic research. Here, we reviewed and synthesized the published records of submerged macrophytes from 14 typical shallow lakes in the eastern plain covering the past 100 years. The results suggest that submerged macrophytes have experienced three clear stages of change: rare period(the 1900 s–the 1950 s), growth period(the1950 s–the 1980 s), and recession period(the 1980 s–now). This finding is different from the traditional understanding that submerged macrophytes were abundant in the early 20 th century and have been degrading since then. On this basis, we proposed the possible evolution pattern(less-more-less) of submerged macrophytes in the eastern plain lake region over the past 100 years,which provides new perspectives about the long-term evolution process of macrophytes in shallow lakes. Furthermore, we found that the decline of submerged macrophytes during the regime shift shows a gradual process at the interdecadal scale; this finding contradicts the classical regime shift theory that macrophytes decline sharply during the critical transition. This study has important theoretical value for the restoration of the eastern plain lakes in China from "turbid lake" to "clear lake", especially for establishing the historical reference condition and restoration path of macrophytes.  相似文献   

8.
马生伟  蔡启铭 《湖泊科学》1998,10(S1):483-491
A new up-winding finite element numerical model, which is two-dimensional and suitable for modeling lake current and the distribution of total phosphorus(TP) in shallow lakes, is derived. Moreover, it is used in the study of wind-driven current in Taihu Lake, and the impact of lake current field on the distribution of TP is also discussed.  相似文献   

9.
The sedimentary environment change, trophic evolution and heavy metals pollution history of the northern Taihu Lake in the last 100 years are studied according to the sedimentary geo-chemical proxies of the core sediments, such as grain size, nutrients, heavy metals, diatom, etc. The nutrients in the sediments depended mainly on the lake internal circulation and the heavy metals were from natural geogenic sources before the 1920s, which were not influenced by human activities generally, and grain size was one of the key factors influencing heavy metals content in the sediments. The alternation of manner and strength of human activities in Taihu Lake catchment before and after the 1920s made the lake sediments coarser, and hence heavy metals and TP content decreased contrasted with that before the 1920s. TP content in sediments and water increased from the 1950s to late 1970s due to anthropogenic pollutants discharge, and the lake belonging to mesotrophic state. TN and TOC content and C/N ratio increased due to the increasing external pollutants into Taihu Lake by human activities, TP content also increased obviously in water and sediments, and the diatom association was dominated by eutrophic species since the late 1970s, indicating the eutrophication state of Taihu Lake in this period. Meanwhile the increasing in heavy metals content, such as Cu, Mn, Ni, Pb and Zn, and their proportion of valid fractions in the sediments indicates that they all result from human pollutants since the late 1970s. The heavy metals in the surface sediments have certain potential biological toxicity due to the higher SEM/AVS ratio.  相似文献   

10.
A preliminary study on vegetation-erosion dynamics and its applications   总被引:5,自引:0,他引:5  
The development of vegetation in mountainous and hilly areas depends on the local climate, precipitation, soil texture, parent material, topography, soil erosion, types of land use and human activities. Among them, soil erosion is an important natural factor and impacts the vegetation development directly and indirectly, changing the morphology and even changing the cli-mate. An erosion-induced efflux of carbon is about 1.14 billion tons per year totally from soil to the at-mosphere, which gen…  相似文献   

11.
湖泊渔业研究:进展与展望   总被引:4,自引:3,他引:1  
作为一种传统产业,渔业在我国经济社会发展中具有不可缺失的重要地位.而渔业作为湖泊最重要的功能之一,其资源变动是湖泊生态系统演变的重要影响因子,同时湖泊渔业资源的变动和退化也是对环境变化最直接的响应.自1980s以来,随着湖泊水环境的改变,湖泊渔业资源衰退趋势明显,中上层浮游生物食性鱼类在鱼类群落中占优势,鱼类资源小型化、低龄化现象严重.本文以湖泊渔业发展的历程为切入口,系统阐述人类活动及湖泊环境变化对渔业资源及生态系统的影响,厘清现阶段湖泊水环境管理、湖泊生态系统修复、湖泊渔业可持续发展等关系,展望我国湖泊渔业的发展前景及新型模式.  相似文献   

12.
吉林省湖、库水质评估及其污染防治   总被引:4,自引:0,他引:4  
湖、库富营养化是营养物质输入过程而引起的一种水效应。它不仅表现为水生植物和藻类的过度生长,同时还伴随着一系列的水质变化进而导致水质恶化,影响水体多种功能。本文以近年监测的主要湖、库的水质数据,采用主成分聚类分析和营养度评价方法对吉林省的主要湖、库的富营养化程度进行了分析与评价。这对区域水资源的合理开发利用,开展环境质量评价与预测,以及对制定湖、库富营养化防治对策具有重要意义。  相似文献   

13.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
15.
中国湖泊营养类型的分类研究   总被引:39,自引:9,他引:30  
对我国130余个主要湖泊的营养状况进行了分类研究。结果表明,目前处于协调营养型湖泊116个,占调查湖泊数量87.9%,占调查湖泊面积的96.0%;非协调营养型湖泊16个,占调查湖泊数量12.1%,占调查湖泊面积的4.0%;在协调营养型湖泊中,影响湖泊资料开发利用的主要障碍是;富营养化问题;非协调营养型湖泊中,主要是超营养化和盐碱化问题,它们有的已经严重地影响了湖区经济的发展,是我国当前亟待解决的重  相似文献   

16.
ABSTRACT

Understanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins.  相似文献   

17.
云南高原湖泊的开发与保护   总被引:4,自引:0,他引:4  
杨文龙 《湖泊科学》1994,6(2):161-165
介绍了云南高原湖泊的形成演化,重点论述其在云南社会、经济发展中的地位,分析了湖泊不合理开发带来的不良生态后果,并提出了一些建议。  相似文献   

18.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

19.
随着经济社会的快速发展和进步,我国湖库水体富营养化情况越来越严重.卫星遥感在水体营养状态监测方面具有重要潜力,但基于卫星遥感的全国范围内湖库水体营养状态监测和分析方面还鲜有研究.本文基于2018夏季的MODIS卫星遥感数据生产FUI指数产品,构建基于FUI水色指数的湖库营养状态评价方法,监测全国范围内144个重点湖库水体的营养状态等级.结果表明:贫营养、中营养、富营养的湖库比例分别为16%、24%、60%;营养状态在空间上分布不均匀,总体上呈现东高西低的现象;东北山地与平原和东部平原湖区以富营养状态水体为主;西部湖库水体以贫到中营养状态为主,尤其是青藏高原湖区贫营养比例比较高;海拔和地表温度等自然因素与工业点源和农业面源污染等人为因素是湖库营养状态的重要影响因素.  相似文献   

20.
湖泊水情遥感研究进展   总被引:1,自引:0,他引:1  
宋春桥  詹鹏飞  马荣华 《湖泊科学》2020,32(5):1406-1420
湖泊作为最直接的淡水资源之一,在人类的生产、生活各方面都占据至关重要的地位.受到全球气候变化与人类活动的影响,湖泊正在发生急剧变化,因而有必要对其进行快速、准确的时空变化监测,从而为水资源管理与保护、未来气候变化预警提供依据.遥感技术的产生与发展为大范围、实时动态的湖泊变化监测提供了难得的契机,它克服了人类对湖泊实地考察的局限性.本文对现有国内外湖泊水情遥感监测技术与方法进行了综合梳理,主要综述了国内外在湖泊水域范围提取、湖泊水位提取、湖泊水量估算、流域水文过程等方面的遥感研究进展情况,重点总结了该领域近年来提出的新方法和新技术.最后,结合当前遥感技术的发展,对未来遥感在湖泊动态变化监测中的应用潜力和趋势进行了简要论述,并对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号