首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
On the basis of seismic refraction investigations and gravimetric data we have modelled the crustal structure of the southern Central Andes (21–23°S). A pronounced variation in crustal parameters is seen in N-S- and W-E-crossing seismic profiles over the entire Andean orogene, characterized by a crustal thickness of up to 70 km under the magmatic arc and backarc, strongly reduced seismic velocities and a Bouguer minimum of −450 mGal. Anomalously low velocities of 5.9–6.0 km/s in the deeper crust of the Western Cordillera and Altiplano regions lead to an over-compensation of the Bouguer minima resulting in values of crustal densities higher than estimates based purely on seismic velocity measurements. In an attempt to reconcile these differences, the behavior of crystalline rocks based on published laboratory data was studied under varying pressure and temperature conditions up to the range of partial melting. If the temperature is increased above the melting point, a rapid decrease in seismic velocity is accompanied by a slow decrease in density. For the Central Andes, a good fit of the observed and calculated Bouguer anomalies is obtained if the densities of the rocks from the low-velocity zone (LVZ) beneath the Western Cordillera and the Altiplano are varied. Model calculations lead to a velocity-density relation for partial molten rocks that allows the melt proportions of rocks to be estimated. Model calculations indicate that 15–20 vol.% of basaltic to andesitic melt at depth is necessary to explain the LVZ and Bouguer anomaly beneath the arc and parts of the backarc. High heat flow values (100 mW/m2) support the idea that large areas of the deeper Andean crust are strongly weakened by the presence of partially molten rocks, resulting in reduced seismic velocities, with the Western Cordillera, the active volcanic arc of the Andean mountain range, acting as a ductile buffer between the two more rigid crustal blocks of the forearc and backarc regions.  相似文献   

2.
We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolívar mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E–W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (−20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.  相似文献   

3.
In the eastern part of the Indian shield,late PaleozoiceMesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt(EGMB)and amphibolite facies rocks of the Rengali Province.At present,the northern part of the basin experiences periodic seismicity by reactivation of faults located both within the basin,and in the Rengali Province to the north.Detailed gravity data collected across the basin show that Bouguer anomalies decrease from the EGMB(wt15 mGal),through the basin(w 10 mGal),into the Rengali Province(w 15 mGal).The data are consistent with the reportedly uncompensated nature of the EGMB,and indicate that the crust below the Rengali Province has a cratonic gravity signature.The contact between the two domains with distinct sub-surface structure,inferred from gravity data,coincides with the North Orissa Boundary Fault(NOBF)that defnes the northern boundary of the Talchir Basin.Post-Gondwana faults are also localized along the northern margin of the basin,and present-day seismic tremors also have epicenters close to the NOBF.This indicates that the NOBF was formed by reactivation of a Neoproterozoic terrane boundary,and continues to be susceptible to seismic activity even at the present-day.  相似文献   

4.
《Tectonophysics》1987,140(1):115-120
The question was examined as to whether the same gravity anomaly is produced for a range of crustal velocity structures all of which produce similar seismic record sections. The results indicate that the maximum errors in the computed gravity anomalies for the various velocity structures is around 20–30 mGal for some models and is around 50 mGal for many others. A major source of error is underestimating the effect of a seismic low-velocity zone which is at one end of the correct velocity structure and which was not detected by several of the interpretations presented at a recent workshop. If no low-velocity layer is included, the error in the gravity anomaly is 30 mGal. The choice of a particular velocity-density relationship does not seem to be a serious problem in the analysis, except for the case of the low-velocity zone, as long as we use a continuous velocity-density curve.  相似文献   

5.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


6.
Spectral harmonic analysis and synthesis of Earth’s crust gravity field   总被引:5,自引:0,他引:5  
We developed and applied a novel numerical scheme for a gravimetric forward modelling of the Earth’s crustal density structures based entirely on methods for a spherical analysis and synthesis of the gravitational field. This numerical scheme utilises expressions for the gravitational potentials and their radial derivatives generated by the homogeneous or laterally varying mass density layers with a variable height/depth and thickness given in terms of spherical harmonics. We used these expressions to compute globally the complete crust-corrected Earth’s gravity field and its contribution generated by the Earth’s crust. The gravimetric forward modelling of large known mass density structures within the Earth’s crust is realised by using global models of the Earth’s gravity field (EGM2008), topography/bathymetry (DTM2006.0), continental ice-thickness (ICE-5G), and crustal density structures (CRUST2.0). The crust-corrected gravity field is obtained after modelling and subtracting the gravitational contribution of the Earth’s crust from the EGM2008 gravity data. These refined gravity data mainly comprise information on the Moho interface and mantle lithosphere. Numerical results also reveal that the gravitational contribution of the Earth’s crust varies globally from 1,843 to 12,010 mGal. This gravitational signal is strongly correlated with the crustal thickness with its maxima in mountainous regions (Himalayas, Tibetan Plateau and Andes) with the presence of large isostatic compensation. The corresponding minima over the open oceans are due to the thin and heavier oceanic crust.  相似文献   

7.
This paper reports the results of 3-D tomographic modelling of crustal structure in the Trans European Suture Zone region (TESZ) of Poland, eastern Germany and Lithuania. The data are the product of a large-scale seismic experiment POLONAISE'97, which was carried out in 1997. This experiment was designed to provide some 3-D coverage. The TESZ forms the boundary between the Precambrian crustal terranes of the East European Craton (EEC) and the younger Phanerozoic terranes to the southwest. The 3-D results generally confirm the earth models derived by earlier 2-D analyses, but also add some important details as well as a 3-D perspective on the structure. The velocity model obtained shows substantial horizontal variations of crustal structure across the study area. Seismic modelling shows low (<6.1 km/s) velocities suggesting the presence of sedimentary rocks down to a depth of about 20 km in the Polish basin. The shape of the basin in the vicinity of the profile P4 shows significant asymmetry. Three-dimensional modelling also allowed tracing of horizontal irregularities of the basin shape as well as variations of the Moho depth not only along profiles, but also between them. The slice between P2 and P4 profiles shows about 10-km variations of the Moho over a 100-km interval. The crustal thickness varies from about 30 km in SW, beneath the Palaeozoic platform, to about 42 km beneath East European Craton in NE. High seismic velocities of about 6.6 km/s were found in the depth range 2–10 km, which coincides with K trzyn anorthosite massif. The results of this 3-D seismic modelling of the POLONAISE'97 data will ultimately be supplemented by inversion of seismic data from previous experiments.  相似文献   

8.
The Southern Granulite Terrain (SGT) is composed of high-grade granulite domain occurring to the south of Dharwar Craton (DC). The structural units of SGT show a marked change in the structural trend from the dominant north–south in DC to east–west trend in SGT and primarily consist of different crustal blocks divided by major shear zones. The Bouguer anomaly map prepared based on nearly 3900 gravity observations shows that the anomalies are predominantly negative and vary between −125 mGal and +22 mGal. The trends of the anomalies follow structural grain of the terrain and exhibit considerable variations within the charnockite bodies. Two-dimensional wavelength filtering as well as Zero Free-air based (ZFb) analysis of the Geoid-Corrected Bouguer Anomaly map of the region is found to be very useful in preparing regional gravity anomaly map and inversion of this map gave rise to crustal thicknesses of 37–44 km in the SGT. Crustal density structure along four regional gravity profiles cutting across major shear zones, lineaments, plateaus and other important geological structures bring out the following structural information. The Bavali Shear Zone extending at least up to 10 km depth is manifested as a plane separating two contrasting upper crustal blocks on both sides and the gravity high north of it reveals the presence of a high density mass at the base of the crust below Coorg. The steepness of the Moyar and Bhavani shears on either side of Nilgiri plateau indicates uplift of the plateau due to block faulting with a high density mass at the crustal base. The Bhavani Shear Zone is manifested as a steep southerly dipping plane extending to deeper levels along which alkaline and granite rocks intruded into the top crustal layer. The gravity high over Palghat gap is due to the upwarping of Moho by 1–2 km with the presence of a high density mass at intermediate crustal levels. The gravity low in Periyar plateau is due to the granite emplacement, mid-crustal interface and the thicker crust. The feeble gravity signature across the Achankovil shear characterized by sharp velocity contrast indicates that the shear is not a superficial structure but a crustal scale zone of deformation reaching up to mid-crustal level.  相似文献   

9.
Wolfgang Torge 《Tectonophysics》1986,130(1-4):385-393
Through recent developments in absolute and relative techniques, gravimetry has reached an accuracy of a few hundredths to a few tenths of μm s−2 *in small or large-scale networks, respectively. Consequently, gravimetric techniques can now be employed as one efficient tool for detecting vertical crustal movements. Gravity data are necessary for converting the results of geometric levelling to heights defined in the gravity field, and—by repeated surveys—to control time variations of the height-reference surface. More important is the use of repeated gravity surveys for strengthening and partly replacing levelling, being a time-consuming procedure with unfavourable error propagation over larger distances. The successful application of observed gravity variations with time in the detection of vertical crustal movements depends on the reliability of the conversion factor between gravity and height changes, and on the accuracy of the gravity measurements. The conversion factor should be determined through simultaneous levelling and gravimetry, in representative parts of the survey region. Strategies for establishing gravimetric control are changing now with the availability of transportable absolute gravity meters, and the possibility of accurately calibrating relative instruments and observing small gravity differences with feed-back-systems. Consequently, more attention has to be given now to disturbing effects of environmental character, such as microseismics, atmospheric pressure and groundwater table variations, and to periodic effects such as gravimetric earth tides and polar motion.  相似文献   

10.
Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises and high-angle reverse faults. The structure (basement trough) has a length of about 150 km and deepens by up to 1 km from its regional trend (northward dipping). The basement trough includes a rise at its center with a height of about 1.5km. The rise is about 10 km wide with rounded upper surface and bounded by vertical faults. A broad freeair gravity low of about 20 mGal and a local high of 8 mGal in its center are associated with the identified basement trough and rise structure respectively. Seismic results reveal that the horizontal crustal compression prevailing in the diffusive plate boundary might have formed the basement trough possibly in early Pliocene time. Differential loading stresses have been generated from unequal crust/sediment thickness on lower crustal and upper mantle rocks. A thin semi-ductile serpentinite layer existing near the base of the crust that is interpreted to have been formed at mid-ocean ridge and become part of the lithosphere, may have responded to the downward loading stresses generated by the sediments and crustal rocks to inject the serpentinites into the overlying strata to form a classic diapiric structure.  相似文献   

11.
For the territory of Northern Eurasia (6°E–165°W; 30–75°N) the distribution of anomalous masses in the lithosphere has been estimated in accordance with the lithosphere isostatic model. The method of model construction is based on the admittance technique. The experimental admittance presents a relation between the part of the outer load uncompensated by the Moho undulations and the residual gravity field and is used to select the best model. The 1 × 1° averaged values of topography elevations, basement and Moho depths, sedimentary cover density and gravity anomalies have been used as initial data. According to the correlation equation relating the outer load and Moho depths, the mean density contrast between the lower crust and the subcrustal lithosphere is 0.43 g/cm3, but the Moho undulation can not provide complete isostatic equilibrium. In some areas, the part of the outer load uncompensated by Moho undulations may be as large as 107 kg/m2 and the residual gravity field is as intensive as + 260 mGal. Assuming that for loads of wavelength > 200 km, local isostatic compensation is valid, in accordance with the admittance analysis, the anomalous masses compensating for the part of the outer load, which is not compensated by Moho undulations, have to be located partly in the lower crust and in the subcrustal layer. The regional trend of anomalous compensating masses is negative under Western Europe, the Mediterranean, Eastern Asia and adjacent marginal seas, and positive under the East European Platform and Western and Central Asia. The local compensating masses correspond to particular tectonic units. The isostatic gravity anomalies of Northern Eurasia have been determined and the long-wave component of the field reflecting anomalous masses under the isostatic compensation level has been evaluated.  相似文献   

12.
The granite-greenstone terrain of south-central Zimbabwe, encompassing the Belingwe (Mberengwa) greenstone belt and sections of the Great Dyke, provides important constraints on models for the evolution of the Zimbabwe craton and the Archaean crust in general. In this paper we enhance and model existing and recently acquired gravity data from the region and correlate the anomalies and their derivatives with the known basement geology to evaluate models for greenstone belt development. We also study the spatial gneiss-granite-greenstone association in general, and the geologic implications of models of the anomaly patterns in particular. Although the Belingwe greenstone belt has been mapped, its subsurface geometry is poorly known. Similarly, the Great Dyke is well studied, but no systematic study of the extent and cross-cutting relations of other mafic dykes in the Archaean crust has been undertaken.The regional gravity field shows no evidence for crustal thickness variations in the area and the gravity anomalies can be explained by lateral density variations of the supracrustal rocks. Prominent gravity highs are observed over the high density ( 3000 kg/m3) volcano-sedimentary piles (greenstone belts) and ultramafic complexes. Well-defined elongate, sub-oval/elliptical gravity lows are associated with intrusive granitic plutons. The granite-greenstone contacts are marked by steep gravity gradients of up to 5 mGal/km that imply steeply dipping or near-vertical contacts for the anomalous bodies. This is tested and confirmed by 21/2D modelling of gravity profiles across the Belingwe and Fort Rixon greenstone belts, constrained by measured densities and observed geological data. The modelling also indicates that these belts, and possibly all the belts in the study area (based on comparable densities and anomaly amplitudes), have limited depth extents in the range of 3–5 km. This is comparable to thicknesses obtained elsewhere from deep seismic reflection data and geoelectrical studies, but mapped stratigraphic thicknesses give a maximum depth extent of about 9.5 km. Present studies and previous work support the idea that the volcanics were extruded within rift zones and laid on older granitic crust, followed by subsidence and rapid deposition of sediments that were sourced from the adjacent basement terrains. The volcano-sedimentary sequences were subsequently deformed by intruding younger plutons and affected by late-stage strike-slip activity producing cross-cutting structures.  相似文献   

13.
The application of variations in the earth's gravity in groundwater exploration on a regional scale, especially in sedimentary basins, metamorphic terrains, valley fills, and for buried alluvial channels, is well established. However, its use in hard crystalline rocks is little known. In granite, for example, the upper weathered layer is a potential primary aquifer, and the underlying fractured rock can form a secondary aquifer. Fracturing and weathering increases the porosity of a rock, thereby reducing the bulk density. Changes in gravity anomalies of 0.1–0.7 mGal for granites, due to weathering or variations in lithology, can be detected. To test the use of gravity as a groundwater exploration tool for crystalline rocks, a gravity survey of the peninsular shield granites underlying Osmania University Campus, Hyderabad, India, was undertaken. At the site, gravity anomalies reflect variations in the lithology and in the thickness of weathered zones. These anomalies also define the position of intrusives and lineaments. Areas of more deeply weathered granite that contain wells of higher groundwater yield are represented by negative gravity values. In the weathered zone, well yield has an inverse relation to the magnitudes of residual gravity. The study confirms the feasibility of gravity as a tool for groundwater exploration in crystalline rocks. Electronic Publication  相似文献   

14.
《Comptes Rendus Geoscience》2019,351(6):407-419
This study aims at mapping the sediment infill thickness in the Saint-Lary basin (Aure valley, French Pyrenees). For this purpose, we combine passive seismic and gravity surveys. The resonance frequencies of the sediment body are retrieved from seismic ambient measurements, while the gravimetric survey shows negative residual anomaly of about −3 mGal in the basin. Both methods reveal unexpected but consistent bedrock shape. The southern Saint-Lary basin appears deeper than its northern part, with maximal infill thickness of about 300 m and 150 m, respectively. Valley cross sections show regular and smooth “U”-shape in the southern Saint-Lary basin, in contrast to an irregular and asymmetric pattern in the northern basin. This basin shape may be related to Quaternary fluvio-glacial carving processes especially controlled by a regional fault (the Soulan fault), variations in bedrock hardness, and preferential ice flow paths.  相似文献   

15.
A 3-D structural model of the Caribbean-South American plate boundary was constructed by gravity modeling. The model was constrained by four wide-angle seismic refraction sections, Moho depth estimations from receiver functions, and additionally seismological hypocenters, surface geology, and geodynamic information. Density values were calculated from empirical velocity-density functions, and mineralogical-chemical composition considering specific P/T conditions. We tested different structural models for Western and Eastern Venezuela. In the final model, the fit of the measured and modeled gravity fields for a long Caribbean slab in Western Venezuela was better than the fit obtained for a short one. This interpretation is consistent with the constraining data. The slab is interpreted to extend further to the south beneath Northern Colombia and culminates in the area of the seismic cluster of the Bucaramanga nest. The modeling estimates a slab dip angle under Maracaibo and Mérida Andes of 15°, which increases to 32° below 100 km depth. The dip direction of approx. N150°E ± 5 increases lightly eastward. In Eastern Venezuela, considering its short wavelength, lineaments analyzed from gravity data (by curvature methods and Euler deconvolution) seem to be related to shallow structures and density contrast in the Serranía del Interior and not from a deep detached slab beneath the continental crust. It is deduced from modeling results that this slab configuration has a very small influence on the gravity field. The slab was modeled according to the subduction-transform propagation model with purely westward subduction and a slab break off along a vertical dip-slip tear through the lithosphere.  相似文献   

16.
The main aim of this paper is seismic and gravimetric modelling of the crustal structure in the Polish Basin. Preliminary results of a large seismic experiment POLONAISE'97 which was conducted during May of 1997 and targeted the deep structure of the Trans-European Suture Zone in Poland are presented. Apart of five POLONAISE'97 profiles (P1÷ P5) two other deep seismic sounding profiles (LT-7 and TTZ) passing the Polish Basin are discussed. Two-dimensional P-wave velocity models of the crust for these high resolution profiles of a total length of about 3000 km are presented. The actual resolution of the crustal structure recognition gives a new possibility for the study of the gravity field's morphology. The gravity modelling along the profiles was undertaken in a general form, as the study of the mutual accordance between the geometry of seismic boundaries and gravity anomalies as a mathematical relation and it given suggestion for reformulation of the fit problem. The first results obtained using the new technique and interpretation are presented in the case of the two-dimensional density modelling of the layers for single profiles of the network and estimations of the supracrustal gravity compensation. The analysis of the residue (r.m.s.) and its gradient is proposed in this new technique instead of analysis of density values, which determination is unstable. The supracrustal gravity response was modelled as a field of equivalent masses on the level situated in the lower lithosphere.  相似文献   

17.
Troughs in Tunisia are interpreted as Plio-Quaternary structures associated to normal faults (grabens) or to flexure faults. Gravity data and seismic sections are used in this study to clarify the structure and the geodynamic evolution of an example of trough: the Grombalia trough (northeastern Tunisia), since the Upper Miocene to the Quaternary. A high residual negative gravity anomaly, which reaches ?15 mGal, is interpreted as being related to the thickening of Mio-Plio-Quaternary deposits (and probably older), as illustrated by seismic data. This subsidence has been the result of a negative flower structure related to strike-slip faults that have been reactivated with normal component during the Upper Miocene and with reverse component during the Pliocene. Seismic and gravity data demonstrate that the fault system is rooted, and more than four kilometres deep. The Grombalia example outlines the association between troughs and strike-slip faults; such a system is recognized in Tunisia, in the Ionian Sea and in the Pelagian Sea. To cite this article: M. Hadj Sassi et al., C. R. Geoscience 338 (2006).  相似文献   

18.
The Andaman arc in the northeastern Indian Ocean defines nearly 1100 km long active plate margin between the India and Burma plates where an oblique Benioff zone develops down to 200 km depth. Several east-trending seismologic sections taken across the Andaman Benioff Zone (ABZ) are presented here to detail the subduction zone geometry in a 3-D perspective. The slab gravity anomaly, computed from the 3-D ABZ configuration, is a smooth, long-wavelength and symmetric gravity high of 85 mGal amplitude centering to the immediate east of the Nicobar Island, where, a prominent gravity “high” follows the Nicobar Deep. The Slab-Residual Gravity Anomaly (SRGA) and Mantle Bouguer Anomaly (MBA) maps prepared for the Andaman plate margin bring out a double-peaked SRGA “low” in the range of − 150 to − 240 mGal and a wider-cum-larger MBA “low” having the amplitude of − 280 to − 315 mGal demarcating the Andaman arc–trench system. The gravity models provide evidences for structural control in propagating the rupture within the lithosphere. The plate margin configuration below the Andaman arc is sliced by the West Andaman Fault (WAF) as well as by a set of sympathetic faults of various proportions, often cutting across the fore-arc sediment package. Some of these fore-arc thrust faults clearly give rise to considerably high post-seismic activity, but the seismic incidence along the WAF further east is comparatively much less particularly in the north, although, the lack of depth resolution for many of the events prohibits tracing the downward continuity of these faults. Tectonic correlation of the gravity-derived models presented here tends to favour the presence of oceanic crust below the Andaman–Nicobar Outer Arc Ridge.  相似文献   

19.
Late Variscan wolframite (± molybdenite) and cassiterite–wolframite greisen, skarn and vein deposits occur in a close spatial association with the granites of the Krušné hory/Erzgebirge batholith (KHEB) in Central Europe. We examined the distribution of the deposits in relation to the gravity field affected by Late Variscan granites using the data from previous gravity and metallogenic studies. Late Variscan granites are differentiated into earlier biotite monzogranites (low-F granites) and later biotite or lithium mica syenogranites (high-F granites) in accordance with the previous classifications. All the outcrops of granites in the KHEB region and their hidden continuation are confined to the Bouguer anomaly contour of − 20 mGal. The Sn–W–Mo (rare metal) deposits and occurrences are within the gravity contour of − 30 mGal with the exception of the Grossschirma stratiform tin deposit in the Freiberg polymetallic ore district. We constructed a geological model based on the gravity data along two profiles across the KHEB showing the position of some rare metal deposits and of outcropping and hidden granite bodies. The models show that the overlapping of earlier and later granites is in the areas of the most intense regional gravity minima. These coincide with the Eastern Volcano-Plutonic Complex (Altenberg minimum), which encloses large volumes of felsic extrusives, microgranite dikes and granites, and the Western Plutonic Complex (Eibenstock minimum), with small volumes of felsic dikes and predominance of earlier and later granites, with no extrusives preserved. There is no distinct relationship between the masses of Late Variscan granites and the distribution and the sizes of associated W ± Mo and Sn–W deposits. We prefer the idea that rare metal mineralization was formed by hydrothermal fluids derived from outside of presently outcropping granites. It originated in two cycles: one connected with the formation of earlier granites producing W ± Mo associations and the other one associated with later granites connected with Sn–W mineralization. Mineralizing fluids were probably generated by mantle–crustal interaction in the crust near the mantle–crust boundary as also indicated by lamprophyric intrusions coeval with the Late Variscan granitic magmatism.  相似文献   

20.
徐伟民  陈石  石磊 《地球科学》2014,39(12):1831-1841
基于最新重力场模型对2014年于田Ms7.3地震震区的重力异常特征进行分析, 并应用Crust1.0地壳模型计算得到震区的深部构造形态, 结果显示: 震中位于地壳厚度陡变带上.同2008年于田Ms7.3地震相比, 震中虽位于不同位置, 但发震机制均与深部地壳结构变化密切相关.统计研究区内历史地震活动性与重力异常之间的关系, 发现震中的自由空气异常与地形存在明显的线性相关性, 而布格异常和均衡异常的结果则明显不同.进一步地分别计算不同重力异常的水平总梯度和线性信号, 结果表明: 重力异常梯度量与地形的相关特性更明显.研究表明: Ms7.0以上大震活动与重力异常之间具有明显的统计特性学, 这可能与重力异常反映的深部结构和壳内质量分布的不均匀有关.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号