首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal mechanisms for three recent earthquakes in Finland are determined using P-wave polarities together with SV/P and SH/P phase amplitude ratios. The events occurred on May 11, 2000 in Toivakka, Central Finland (ML=2.4), on September 15, 2000 in Kuusamo, northeastern Finland (ML=3.5), and on May 2, 2001 in Kolari, western Finnish Lapland (ML=2.9).In order to obtain reliable estimates of the source parameters, one-dimensional crust and upper mantle velocity models are derived for the epicenter areas from deep-seismic sounding results. The starting models are modified by one-dimensional ray tracing using the earthquake observations. The events are relocated by employing P- and S-phase arrival times from the nearest seismic stations and the final velocity models. Synthetic waveforms, calculated with the reflectivity method, are used to further constrain and verify the source and structural parameters.The Toivakka earthquake indicates thrust- or reverse-faulting mechanism at a depth of 5 km. After comparison with aeromagnetic and topographic data we suggest the eastward dipping nodal plane (358°/42°) was the fault plane. The best-fitting fault plane solution of the Kolari earthquake suggests pure thrust-faulting at a depth of 5 km. The nodal plane striking 035°/30° correlates well with surface observations of the postglacial, possibly listric fault systems in the source area. The Kuusamo earthquake (focal depth 14 km) has a normal-faulting mechanism with the nodal planes trending 133°/47° or 284°/47°. Preference is given to the SW-dipping nodal plane, as it seems to coincide with topographic and magnetic lineament directions that have been active after the last ice age.The three earthquakes have occurred in old Precambrian faults and shear zones, which have been reactivated. The reactivated faults are favourably oriented in the local stress field.  相似文献   

2.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

3.
Cheng-Horng Lin   《Tectonophysics》2007,443(3-4):271
In 1999, a large earthquake (Mw = 7.6) occurred along the Chelungpu fault in the fold-and-thrust belt of western Taiwan. To shed more light on the subsurface structures and the seismogenic layers, three-dimensional velocity structures were inverted by using the travel times of both P- and S-waves from 2391 aftershocks recorded by the Central Weather Bureau during the 15 months that followed. From tomography, a typical image of the large-scale thrusting structures in the upper crust across the Chelungpu fault was obtained. In general, high velocities beneath the Western Foothills and Central Ranges are separated from low velocities beneath the Coastal Plain by an east-dipping boundary that is roughly consistent with the Chelungpu fault on the surface. The contrast in velocity on either side of the Chelungpu fault is indicative of about a 7- to 9-km vertical offset in the upper crust. The relocated hypocenter for the Chi-Chi earthquake shifts by 2.2 km toward the northwest, and its focal depth decreases by 0.7 km. A plot of focal depths versus rock velocities where the aftershocks occurred shows earthquakes are more inclined to occur in rock with a velocity of around 5.6 km/s. This strongly suggests the seismogenic layer in the fold-and-thrust belt of Taiwan is more structure-dependent than depth-dependent.  相似文献   

4.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

5.
The Great Lisbon earthquake has the largest documented felt area of any shallow earthquake and an estimated magnitude of 8.5–9.0. The associated tsunami ravaged the coast of SW Portugal and the Gulf of Cadiz, with run-up heights reported to have reached 5–15 m. While several source regions offshore SW Portugal have been proposed (e.g.— Gorringe Bank, Marquis de Pombal fault), no single source appears to be able to account for the great seismic moment as well as all the historical tsunami amplitude and travel time observations. A shallow east dipping fault plane beneath the Gulf of Cadiz associated with active subduction beneath Gibraltar, represents a candidate source for the Lisbon earthquake of 1755.Here we consider the fault parameters implied by this hypothesis, with respect to total slip, seismic moment, and recurrence interval to test the viability of this source. The geometry of the seismogenic zone is obtained from deep crustal studies and can be represented by an east dipping fault plane with mean dimensions of 180 km (N–S) × 210 km (E–W). For 10 m of co-seismic slip an Mw 8.64 event results and for 20 m of slip an Mw 8.8 earthquake is generated. Thus, for convergence rates of about 1 cm/yr, an event of this magnitude could occur every 1000–2000 years. Available kinematic and sedimentological data are in general agreement with such a recurrence interval. Tsunami wave form modeling indicates a subduction source in the Gulf of Cadiz can partly satisfy the historical observations with respect to wave amplitudes and arrival times, though discrepancies remain for some stations. A macroseismic analysis is performed using site effect functions calculated from isoseismals observed during instrumentally recorded strong earthquakes in the region (M7.9 1969 and M6.8 1964). The resulting synthetic isoseismals for the 1755 event suggest a subduction source, possibly in combination with an additional source at the NW corner of the Gulf of Cadiz can satisfactorily explain the historically observed seismic intensities. Further studies are needed to sample the turbidites in the adjacent abyssal plains to better document the source region and more precisely calibrate the chronology of great earthquakes in this region.  相似文献   

6.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

7.
This paper presents the main recent results obtained by the seismological and geophysical monitoring arrays in operation in the rift of Corinth, Greece. The Corinth Rift Laboratory (CRL) is set up near the western end of the rift, where instrumental seismicity and strain rate is highest. The seismicity is clustered between 5 and 10 km, defining an active layer, gently dipping north, on which the main normal faults, mostly dipping north, are rooting. It may be interpreted as a detachment zone, possibly related to the Phyllade thrust nappe. Young, active normal faults connecting the Aigion to the Psathopyrgos faults seem to control the spatial distribution of the microseismicity. This seismic activity is interpreted as a seismic creep from GPS measurements, which shows evidence for fast continuous slip on the deepest part on the detachment zone. Offshore, either the shallowest part of the faults is creeping, or the strain is relaxed in the shallow sediments, as inferred from the large NS strain gradient reported by GPS. The predicted subsidence of the central part of the rift is well fitted by the new continuous GPS measurements. The location of shallow earthquakes (between 5 and 3.5 km in depth) recorded on the on-shore Helike and Aigion faults are compatible with 50° and 60° mean dip angles, respectively. The offshore faults also show indirect evidence for high dip angles. This strongly differs from the low dip values reported for active faults more to the east of the rift, suggesting a significant structural or rheological change, possibly related to the hypothetical presence of the Phyllade nappe. Large seismic swarms, lasting weeks to months, seem to activate recent synrift as well as pre-rift faults. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (M = 6 to 6.7) is very high within a few decades. Furthermore, the region west to Aigion is likely to be in an accelerated state of extension, possibly 2 to 3 times its mean interseismic value. High resolution strain measurement, with a borehole dilatometer and long base hydrostatic tiltmeters, started end of 2002. A transient strain has been recorded by the dilatometer, lasting one hour, coincident with a local magnitude 3.7 earthquake. It is most probably associated with a slow slip event of magnitude around 5 ± 0.5. The pore pressure data from the 1 km deep AIG10 borehole, crossing the Aigion fault at depth, shows a 1 MPa overpressure and a large sensitivity to crustal strain changes.  相似文献   

8.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

9.
The Spanish Central Pyrenees have been the scenario of at least two damaging earthquakes in the last 800 years. Analysis of macroseismic data of the most recent one, the Vielha earthquake (19 November 1923), has led to the identification of the North Maladeta Fault (NMF) as the seismic source of the event. This E–W trending fault defines the northern boundary of the Maladeta Batholith and corresponds to a segment of the Alpine Gavarnie thrust fault. Our study shows that the NMF offsets a reference Neogene peneplain. The maximum observed vertical displacement is  730 m, with the northern downthrown sector slightly tilting towards the South. This offset provides evidence of normal faulting and together with the presence of tectonic faceted spurs allowed us to geomorphically identify a fault trace of 17.5 km. This length suggests that a maximum earthquake of Mw = 6.5 ± 0.66 could occur in the area. The geomorphological study was improved with a resistivity model obtained at Prüedo, where a unique detritic Late Miocene sequence crops out adjacent to the NMF. The section is made up of 13 audiomagnetotelluric soundings along a 1.5 km transect perpendicular to the fault trace at Prüedo and reveals the structure in depth, allowing us to interpret the Late Miocene deposits as tectonically trapped basin deposits associated with normal faulting of the NMF. The indirect age of these deposits has been constrained between 11.1 and 8.7 Ma, which represents a minimum age for the elevated Pyrenean peneplain in this part of the Pyrenees. Therefore, we propose the maximum vertical dip-slip rate for the NMF to be between 0.06 and 0.08 mm/a. Normal faulting in this area is attributed to the vertical lithospheric stress associated with the thickened Pyrenean crust.  相似文献   

10.
The Yenice–Gönen Fault (YGF) is one of the most important active tectonic structures in the Biga peninsula. On March 18, 1953, a destructive earthquake (Mw = 7.2) occurred on the YGF, which is considered to be a part of the southern branch of the North Anatolian Fault Zone (NAFZ). A 70 km-long dextral surface rupture formed during the Yenice–Gönen Earthquake (YGE).In this study, structural and palaeoseismological features of the YGF have been investigated. The YGF surface ruptures have been mapped and three trenches were excavated at Muratlar, Karaköy and Seyvan sites.According to the palaeoseismic interpretation and the results of 14C AMS dating, Seyvan trench shows that an earthquake of palaeoseismic age ca. 620 AD ruptured a different strand of the 1953 fault, producing rather significant surface rupture displacement, while there are indications that at least two older events occurred during the past millennia. Another set of trenches excavated near Gönen town (Muratlar village) revealed extensive liquefaction not only during the 1953 event, but also during a previous earthquake, dated at 1440 AD. The Karaköy trench shows no indications of recent reactivations.Based on the trenching results, we estimate a recurrence interval of 660 ± 160 years for large morphogenic earthquakes, creating linear surface ruptures. The maximum reported displacement during the 1953 earthquake was 4.2 m. Taking into account the palaeoseismologically determined earthquake recurrence interval and maximum displacement, slip-rate of the YGF has been calculated to be 6.3 mm/a, which is consistent with present-day velocities determined by GPS measurements. According to the geological investigations, cumulative displacement of the YGF is 2.3 km. This palaeoseismological study contributes to model the behaviour of large seismogenic faults in the Biga Peninsula.  相似文献   

11.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

12.
The Azores archipelago (Portugal) is located on an oceanic plateau, in a geodynamic environment prone to intense seismic and volcanic activity. In order to investigate the crustal structure in this region, we have conducted a local earthquake tomography study in the area of the islands of Faial, Pico and S. Jorge using data recorded in July 1998. The July 9th 1998 earthquake, near Faial Island, triggered an aftershock sequence of thousands of events that lasted for several months and were recorded by a total of 14 stations located on the three islands surrounding the epicentral area. In the upper crustal layers, consistency is seen between the tomographic results and the islands' surface volcanic units. Beneath the Faial central volcano a low Vp (< 6.0 km/s) anomaly roughly located at 3–7 km depth, suggests a connection to the plumbing system, possibly the presence of a magma chamber. In NE Faial, a high Vp (> 6.3 km/s) body was found located at mid-lower crust, most likely an intrusion of gabbroic composition, that is bordered by the registered seismic activity; its shape suggesting a tectonic controlled mechanism. The relocated hypocenters, together with the overall analysis of the Tomographic model, suggest a tectonic segmentation of Faial Island. The crustal thickness under the islands volcanic buildings of the Faial–Pico area was estimated at around 14 km.  相似文献   

13.
The maximum expected ground motion in Greece is estimated for shallow earthquakes using a deterministic seismic hazard analysis (DSHA). In order to accomplish this analysis the input data include an homogeneous catalogue of earthquakes for the period 426 BC–2003, a seismogenic source model with representative focal mechanisms and a set of velocity models. Because of the discrete character of the earthquake catalogue and of errors in location of single seismic events, a smoothing algorithm is applied to the catalogue of the main shocks to get a spatially smoothed distribution of magnitude. Based on the selected input parameters synthetic seismograms for an upper frequency content of 1 Hz are computed on a grid of 0.2° × 0.2°. The resultant horizontal components for displacement, velocity, acceleration and DGA (Design Ground Acceleration) are mapped. The maps which depict these results cannot be compared with previously published maps based on probabilistic methodologies as the latter were compiled for a mean return period of 476 years. Therefore, in order to validate our deterministic analysis, the final results are compared with PGA estimated from the maximum observed macroseismic intensity in Greece during the period 426 BC–2003.Since the results are obtained for point sources, with the frequency content scaled with moment magnitude, some sensitivity tests are performed to assess the influence of the finite extent of fault related to large events. Sensitivity tests are also performed to investigate the changes in the peak ground motion quantities when varying the crustal velocity models in some seismogenic areas. The ratios and the relative differences between the results obtained using different models are mapped and their mean value computed. The results highlight the importance in the deterministic approach of using good and reliable velocity models.  相似文献   

14.
Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank.Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66°E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes.  相似文献   

15.
N. Kraeva   《Tectonophysics》2004,383(1-2):29-44
Application of Tikhonov's technique, using input errors for the parameter of regularization estimation, enhances the accuracy and stability of the reconstruction of a source time function (STF) by the empirical Green function (EGF) method that gives us an opportunity to use simultaneously for analysis body and surface waves data, and to estimate the horizontal and vertical directivity effects. Knowledge of the last is particularly useful for the choice of an active nodal plane of earthquakes with the dip slip fault orientation that allows us to classify these earthquakes to the interplate or intraplate types and thereby to reach the better understanding of tectonic processes in the region of interest.By way of illustration, an attempt to estimate average parameters of faulting in a first approximation is made herein for two Russian Far East large events with opposite types of focal mechanism orientation, strike slip and dip slip. The former is not a matter of interest in the context of vertical directivity effect but enables us to test the method.The directivity analysis of pulse durations and inverse amplitudes of the relative source time functions (RSTFs) restored at eight globally distributed stations IRIS indicates that the destruction in the source of the Neftegorsk earthquake (05/27/1995 MW=7.1) propagated roughly horizontally in the direction 8±11° during 19.2±0.4 s along the rupture extending 35.5±4.9 km. The calculated slip distribution along the rupture coincides within the error with the results of field geological measurements on the causal surface fault that proves that the Neftegorsk earthquake source is well described by the model of the linear unilateral fault and gives a good assessment of the method applied.The average parameters of faulting in the Kamchatka earthquake (03/08/1999 MW=6.9) have been determined from data of 13 station IRIS. It was shown that the destruction in its source propagated downward at an angle of about 60° with horizon, in the direction about S156° E, during 13.4±0.2 s, along the rupture totaling 25.5±2.3 km in length. Therefore, the nodal plane, steeply dipped to the SE, was active and this event can be regarded as an intraplate type. Two asperities can be selected; the first with the maximum slip 3.3 m located at a distance of about 7 km from the onset of rupture, and the second with the maximum slip about 0.9 m centered at approximately 19 km from that.  相似文献   

16.
We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.  相似文献   

17.
A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. Yet, the particular mechanisms through which fluids and associated parameters influence the stress regime and thus the seismicity of a particular area are not well understood.We carry out a study of the spatio-temporal behavior of earthquakes, fluid-related parameters (groundwater levels) and meteorological observables (precipitation) in the swarm earthquake area of Bad Reichenhall, southeastern Germany. The small volume in which the earthquakes take place, almost yearly occurring earthquake swarms and a permanent, seismo-meteorological monitoring network, provide nearly controlled experimental conditions to study the physics of earthquake swarms and to infer characteristic properties of the seismogenic crust.In this paper we (1) describe this fairly unique study area in terms of geology, seismicity and atmospheric conditions; (2) present two cases of earthquake swarms that seem to follow above-average rainfall events; and (3) examine the observed migration of hypocenters with a simple pore pressure diffusion model.We find significant correlation of seismicity with rainfall and groundwater level increase, and estimate an average hydraulic diffusivity of D = 0.75 ± 0.35 m2/s for Mt. Hochstaufen in 2002.  相似文献   

18.
Long period body waves are examined to show that the Hamran (1972.9.3), Darel (1981.9.12) and Patan (1974.12.28) earthquakes in Kohistan had focal depths of about 8–10 km. All involved high angle reverse faulting (thrusting) and had seismic moments of about 2.2 to 2.7·1025 dyne cm. These shallow depths contrast with the deeper hypocentres found in the Hindu Kush and northeast Karakoram to the north and in Hazara to the south. The Hamran and Patan shocks were assigned depths of 45 km by the ISC, indicating that even well-recorded events in this region may have focal depths in error by 30 km  相似文献   

19.
We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW–ESE trend. The previous strong sequence close to Lake Trichonis occurred in June–December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW–SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW–SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E–W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW–SE normal fault that strikes at a  45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the importance of further investigations to unravel in detail the tectonics of this region.  相似文献   

20.
Franck A. Audemard   《Tectonophysics》2006,424(1-2):19-39
This paper discusses the surface rupture of the Cariaco July 09, 1997 Ms 6.8 earthquake in northeastern Venezuela – located at 10.545°N and 63.515°W and about 10 km deep. The field reconnaissance of the ground breaks confirms that this event took place on the ENE–WSW trending onshore portion of the dextral El Pilar fault (between the Gulfs of Cariaco and Paria), which is part of the major wrenching system within the Caribbean–South America plate boundary zone. Dextral slip along this fault was further supported by the structural style of this rupture (en echelon right-lateral R shears connected by mole tracks at restraining stepovers) and by larger geometric complexities (pop-ups at Las Manoas and Guarapiche), as well as by the focal mechanism solutions determined for the event by several authors. This 1997 surface ruptre comprised two distinct sections, from west to east: (a) a main very conspicuous, continuous, 30-km-long, rather straight, 075°N-trending alignment of en echelon surface breaks, with a rather constant, purely dextral coseismic slip of about 25  cm, but reaching a maximum value of 40 cm slightly northwest of Pantoño; and (b) a secondary discontinuous, 10-km-long, boomerang-shaped rupture, with a maximum coseismic slip of 20 cm at Guarapiche. The onshore extent of the surface rupture totalled 36 km, but may continue westward underwater, as suggested by the very shallow aftershock seismicity. This aftershock activity also clearly defined the steep north dip of the fault plane along the western rupture, suggesting tectonic inheritance on this major fault.From many locals' accounts, the rupture seems to have propagated from Pantoño to the west (highly asymmetric bidirectionality). This suggests that earthquake nucleation happened at or near the Casanay–Guarapiche restraining bend and rupture quickly propagated westward, allowing only a small fraction to progress eastwards beyond the bend. Additionally, the large fraction of after-slip (or creep) released is to be related to such restraining bend, which seems to have partly locked slip during rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号