首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We make a statistical analysis of the periodsP and period-derivativesP of pulsars using a model independent theory of pulsar flow in theP-P diagram. Using the available sample ofP andP values, we estimate the current of pulsars flowing unidirectionally along theP-axis, which is related to the pulsar birthrate. Because of radio luminosity selection effects, the observed pulsar sample is biased towards lowP and highP. We allow for this by weighting each pulsar by a suitable scale factor. We obtain the number of pulsars in our galaxy to be 6.05−2.80 +3.32 × 105 and the birthrate to be 0.048−0.011 +0.014 pulsars yr−1 galaxy−1. The quoted errors refer to 95 per cent confidence limits corresponding to fluctuations arising from sampling, but make no allowance for other systematic and random errors which could be substantial. The birthrate estimated here is consistent with the supernova rate. We further conclude that a large majority of pulsars make their first appearance at periods greater than 0.5 s. This ‘injection’, which runs counter to present thinking, is probably connected with the physics of pulsar radio emission. Using a variant of our theory, where we compute the current as a function of pulsar ‘age’ (1/2P/P), we find support for the dipole braking model of pulsar evolution upto 6 × 106 yr of age. We estimate the mean pulsar braking index to be 3.7−0.8 +0.8.  相似文献   

2.
We have analysed polarization data for a large number of isolated pulsars to investigate the evolution of pulsar radio beams. Assuming that a circular beam is directed along the axis of a dipolar magnetic field, we demonstrate that the distribution of magnetic inclination angles for the parent population of all pulsars is not flat but highly concentrated towards small inclination angles and that, consequently, the average beaming fraction is only ∼ 10 per cent. Furthermore, we find that there is a tendency for the beam axis to align with the rotational axis on a time-scale of ∼ 107 yr. This has interesting consequences for statistical studies of the pulsar population. Finally, the luminosity of pulsars is shown to be independent of the impact parameter, which indicates that pulsar beams are sharp-edged and have a relatively flat integrated intensity distribution.  相似文献   

3.
The Parkes High-Latitude pulsar survey covers a region of the sky enclosed by Galactic longitudes 220° < l < 260° and Galactic latitudes | b | < 60°. The observations have been performed using the 20-cm multibeam receiver on the Parkes 64-m radio telescope. A total of 6456 pointings of 265 s each have been collected. The system adopted provided a sensitivity limit, for long-period pulsars with 5 per cent duty cycles, of ∼0.5 mJy. Data analysis resulted in the detection of 42 pulsars of which 18 were new discoveries. Four of these belong to the class of the millisecond – or recycled – pulsars; three of these four are in binary systems. The double pulsar system J0737−3039 is among those and has been presented elsewhere. Here, we discuss the other discoveries and provide timing parameters for the objects for which we have a phase-connected solution.  相似文献   

4.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

5.
A statistical study of 233 pulsar proper motions   总被引:2,自引:0,他引:2  
We present and analyse a catalogue of 233 pulsars with proper motion measurements. The sample contains a wide variety of pulsars including recycled objects and those associated with globular clusters or supernova remnants. After taking the most precise proper motions for those pulsars for which multiple measurements are available, the majority of the proper motions (58 per cent) are derived from pulsar timing methods, 41 per cent using interferometers and the remaining 1 per cent using optical telescopes. Many of the one-dimensional (1D) and two-dimensional (2D) speeds (referring to speeds measured in one coordinate only and the magnitudes of the transverse velocities, respectively) derived from these measurements are somewhat lower than earlier estimates because of the use of the most recent electron density model in determining pulsar distances. The mean 1D speeds for the normal and recycled pulsars are 152(10) and 54(6) km s−1, respectively. The corresponding mean 2D speeds are 246(22) and 87(13) km s−1. PSRs B2011+38 and B2224+64 have the highest inferred 2D speeds of  ∼1600 km s−1  . We study the mean speeds for different subsamples and find that, in general, they agree with previous results. Applying a novel deconvolution technique to the sample of 73 pulsars with characteristic ages less than 3 Myr, we find the mean three-dimensional (3D) pulsar birth velocity to be 400(40) km s−1. The distribution of velocities is well described by a Maxwellian distribution with  1D rms σ= 265 km s−1  . There is no evidence for a bimodal velocity distribution. The proper motions for PSRs B1830−08 and B2334+61 are consistent with their proposed associations with the supernova remnants W41 and G114.3+0.3, respectively.  相似文献   

6.
Radio-quiet γ-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the γ-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1–10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the γ-ray beams predicted by slot gap and outer gap models. From the results of this study, one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the γ-ray pulsar population.   相似文献   

7.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

8.
We develop a numerical code for simulating the magnetospheres of millisecond pulsars, which are expected to have unscreened electric potentials due to the lack of magnetic pair production. We incorporate General Relativistic (GR) expressions for the electric field and charge density and include curvature radiation (CR) due to primary electrons accelerated above the stellar surface, whereas inverse Compton scattering (ICS) of thermal X-ray photons by these electrons are neglected as a second-order effect. We apply the model to PSR J0437-4715, a prime candidate for testing the GR-Electrodynamic theory, and find that the curvature radiation spectrum cuts off at energies below 15 GeV, which are well below the threshold of the H.E.S.S. telescope, whereas Classical Electrodynamics predict a much higher cutoff near 100 GeV, which should be visible for H.E.S.S., if standard assumed Classical Electrodynamics apply. GR theory also predicts a relatively narrow pulse (2φ L ∼ 0.2 phase width) centered on the magnetic axis, which sets the beaming solid angle to ∼0.5 sr per polar cap (PC) for a magnetic inclination angle of 35 relative to the spin axis, given an observer which sweeps close to the magnetic axis. We also find that EGRET observations above 100 MeV of this pulsar constrain the polar magnetic field strength to B pc < 4× 108 G for a pulsar radius of 10 km and moment of inertia of 1045 g cm2. The field strength constraint becomes even tighter for a larger radius and moment of inertia. Furthermore, a reanalysis of the full EGRET data set of this pulsar, assuming the predicted pulse shape and position, should lead to even tighter constraints on neutron star and GR parameters, up to the point where the GR-derived potential and polar cap current may be questioned.  相似文献   

9.
We present results of our pulsar population synthesis of normal and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ-ray emission from both millisecond and normal pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.   相似文献   

10.
Analysis of the arrival directions of extensive air showers (EASs) detected on the EAS MSU array and the prototype of the EAS-1000 array has revealed a region of enhanced flux of cosmic rays with PeV energies toward the pulsars PSR J1840+5640 and LAT PSR J1836+5925 at a confidence level up to 4.5σ. The first pulsar was discovered almost 30 years ago and is a well-studied old radio pulsar at a distance of 1.7 kpc from the Solar system. The second pulsar belongs to a new class of pulsars discovered by the Fermi Gamma-Ray Observatory whose pulsations are seen neither in the X-ray nor in the radio bands, but only in the gamma-ray energy range (gamma-ray-only pulsars). In our opinion, the existence of a region of enhanced cosmic-ray flux in the data sets obtained on two different arrays suggests that the pulsars can make a noticeable contribution to the flux of Galactic cosmic rays with PeV energies.  相似文献   

11.
Using reasonable assumptions, we derive the distribution function of pulsar space velocities from the distribution of pulsar heights above the Galactic plane. We find that for 137 pulsars of the north Galactic hemisphere, the space velocity distribution is discrete, and forms two separate groups. We estimate the velocity ranges and the mean pulsar velocity of each group.Translated from Astrofizika, Vol. 37, No. 2, pp. 245–254, April–June, 1994.  相似文献   

12.
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6±1.9 Gyr . Our upper limit for the orbital eccentricity of only 8×10−7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.  相似文献   

13.
A survey of the entire southern sky for millisecond and low-luminosity pulsars using the ATNF Parkes radio telescope has now been completed. The survey detected 298 pulsars, of which 101 were previously unknown. The new pulsars include 17 millisecond pulsars. This is the largest sample of both normal and millisecond pulsars detected in any survey. Combining our sample with other recent surveys in the Northern Hemisphere, we present a statistical study of the populations of both normal and millisecond pulsars. We find that the improved statistics allow us to estimate the number and birth-rate of both types of pulsar down to a 400-MHz luminosity limit of 1 mJy kpc2. The local surface densities of potentially observable normal pulsars and millisecond pulsars are both about 30 kpc−2, corresponding to ∼ 30000 potentially observable pulsars of each type in the Galaxy. Once beaming effects are taken into consideration we estimate that the active population of normal pulsars is ∼ 160000. Although there is evidence for flattening of the luminosity function of normal pulsars, this is not evident for millisecond pulsars which probably have a substantial population with luminosities below 1 mJy kpc2. After correcting for beaming effects, we estimate that a normal pulsar is born with a luminosity greater than 1 mJy kpc2 between once every 60 and 330 yr in the Galaxy. The birth-rate of millisecond pulsars is at least 3 × 10−6 yr−1 above the same luminosity limit. Modelling the observed transverse speeds of millisecond pulsars using a dynamical simulation, we find their mean birth velocity to be 130 ± 30 km s−1, significantly lower than that of the normal pulsars.  相似文献   

14.
This review describes the observational properties of radio pulsars, fast rotating neutron stars, emitting radio waves. After the introduction we give a list of milestones in pulsar research. The following chapters concentrate on pulsar morphology: the characteristic pulsar parameters such as pulse shape, pulsar spectrum, polarization and time dependence. We give information on the evolution of pulsars with frequency since this has a direct connection with the emission heights, as postulated in the radius to frequency mapping (RFM) concept. We deal successively with the properties of normal (slow) pulsars and of millisecond (fast-recycled) pulsars. The final chapters give the distribution characteristics of the presently catalogued 1300 objects.Received: 5 December 2003, Published online: 15 April 2004 Correspondence to: Richard Wielebinski  相似文献   

15.
Using the standard equation for the slowdown of a neutron star, we derive a formula for the braking index via integration rather than the conventional differentiation. The new formula negates the need to measure the second time derivative of the rotation frequency, ν¨ . We show that the method gives similar braking indices for PSR B1509−58 and the Crab pulsar to those already in the literature. We point out that our method is useful for obtaining the braking indices of moderate-aged pulsars without the need for long, phase-connected timing solutions. We applied the method to 20 pulsars and discuss the implications of the results. We find that virtually all the derived braking indices are dominated by the effects of (unseen) glitches, the recovery from which corrupts the value of ν˙ . However, any real, large, positive braking index has implications for magnetic field decay and offers support to recent models of pulsar evolution.  相似文献   

16.
Shemar & Lyne have previously presented observations and an analysis of 32 glitches and their subsequent relaxations observed in a total of 15 pulsars. These data are brought together in this paper with those published by other authors. We show quantitatively how glitch activity decreases linearly with decreasing rate of slow-down. As indicated previously from studies of the Vela pulsar, the analysis suggests that 1.7 per cent of the moment of inertia of a typical neutron star is normally contained in pinned superfluid which releases its excess angular momentum at the time of a glitch. There is a broad range of glitch amplitude and there is a strong indication that pulsars with large magnetic fields suffer many small glitches while others show a smaller number of large glitches. Transient effects following glitches are very marked in young pulsars and decrease linearly with decreasing rate of slow-down, suggesting that the amount of loosely pinned superfluid decreases with age. We suggest that the low braking index of the Vela and Crab pulsars cannot be caused by a decreasing moment of inertia and should be attributed to step increases in the effective magnetic moment of the neutron star at the glitches.  相似文献   

17.
We have discussed the evolution of two pulsar types suggested by Huanget al. (1985). Starting from the formulae given by them, we find that these two types of pulsars follow different evolutionary tracks, different structures, different average ages; and they are going to different graveyards. From these differences we may infer that the two pulsar types may have different progenitors.  相似文献   

18.
We have looked for and found a possible spatial correlation between the present pulsar distribution and the estimated locations of the spiral arms at earlier epochs. Through a detailed statistical analysis we find a significant correlation between the present distribution of pulsars and the mass distribution (in the spiral arms) expected about 60 Myr ago for a corotation resonance radius of 14kpc. We discuss the implications of this correlation for the minimum mass of the progenitors of pulsars. Interpreting the spread in the locations of pulsars with respect to the past locations of the spiral arms as predominantly due to their space velocities, we derive an average velocity for the pulsar population.  相似文献   

19.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

20.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号