首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The algorithm to transform from 3D Cartesian to geodetic coordinates is obtained by solving the equation of the Lagrange parameter. Numerical experiments show that geodetic height can be recovered to 0.5 mm precision over the range from −6×106 to 1010 m. Electronic Supplementary Material: Supplementary material is available in the online version of this article at  相似文献   

2.
《测量评论》2013,45(93):290-303
Abstract

In order to reduce the shoran distance to geodetic distance, it is necessary to know the following: (a) the height above sea level of the ground stations, (b) the elevation of the airborne station at the time of transits and (c) the path and velocity of the radar wave through the atmosphere.  相似文献   

3.
Water vapor radiometric (WVR) and surface meteorological (SM) measurements taken during three Global Positioning System (GPS) geodetic experiments are used to calculate process noise levels for random walk and first-order Gauss-Markov temporal models of tropospheric path delays. Entire wet and combined wet and dry zenith delays at each network site then are estimated simultaneously with the geodetic parameters without prior calibration. The path delays and corresponding baseline estimates are compared to those obtained with calibrated data and stochastic residual delays. In this manner, the marginal utility of a priori tropospheric calibration is assessed given the ability to estimate the path delays directly using only theGPS data. Estimation of total zenith path delays with appropriate random walk or Gauss-Markov models yields baseline repeatabilities of a few parts in 108. This level of geodetic precision, and accuracy as suggested by analyses on collocated baselines estimated independently by very long baseline interferometry, is comparable to or better than that obtained after path delay calibration usingWVR and/orSM measurements. Results suggest thatGPS data alone have sufficient strength to resolve centimeter-level zenith path delay fluctuations over periods of a few minutes.  相似文献   

4.
none 《测量评论》2013,45(86):363-371
Abstract

The constant K in equation (12) represents distance expended through time lags in the instrument itself, and, although the value of K can be calculated from electrical data, this would not be very satisfactory and it would be better to determine it directly by means of observations over a line of known length. In addition, the point from which K would be reckoned is not a convenient one for actual field measurements. Instead of this, it is more convenient to choose an index mark on the instrument itself and referall measurements to this and thence to the mark over which the instrument is set up.  相似文献   

5.
A set of2261 5°×5° mean anomalies were used alone and with satellite determined harmonic coefficients of the Smithsonian' Institution to determine the geopotential expansion to various degrees. The basic adjustment was carried out by comparing a terrestrial anomaly to an anomaly determined from an assumed set of coefficients. The (14, 14) solution was found to agree within ±3 m of a detailed geoid in the United States computed using1°×1° anomalies for an inner area and satellite determined anomalies in an outer area. Additional comparisons were made to the input anomaly field to consider the accuracy of various harmonic coefficient solutions. A by-product of this investigation was a new γE=978.0463 gals in the Potsdam system or978.0326 gals in an absolute system if −13.7 mgals is taken as the Potsdam correction. Combining this value of γE withf=1/298.25, KM=3.9860122·10 22 cm 3 /sec 2 , the consistent equatorial radius was found to be6378143 m.  相似文献   

6.
An inverse Poisson integral technique has been used to determine a gravity field on the geoid which, when continued by analytic free space methods to the topographic surface, agrees with the observed field. The computation is performed in three stages, each stage refining the previous solution using data at progressively increasing resolution (1o×1o, 5′×5′, 5/8′×5/8′) from a decreasing area of integration. Reduction corrections are computed at 5/8′×5/8′ granularity by differencing the geoidal and surface values, smoothed by low-pass filtering and sub-sampled at 5′ intervals. This paper discusses 1o×1o averages of the reduction corrections thus obtained for 172 1o×1o squares in western North America. The 1o×1o mean reduction corrections are predominantly positive, varying from −3 to +15mgal, with values in excess of 5mgal for 26 squares. Their mean andrms values are +2.4 and 3.6mgal respectively and they correlate well with the mean terrain corrections as predicted byPellinen in 1962. The mean andrms contributions from the three stages of computation are: 1o×1o stage +0.15 and 0.7mgal; 5′×5′ stage +1.0 and 1.6mgal; and 5/8′×5/8′ stage +1.3 and 1.8mgal. These results reflect a tendency for the contributions to become larger and more systematically positive as the wavelengths involved become shorter. The results are discussed in terms of two mechanisms; the first is a tendency for the absolute values of both positive and negative anomalies to become larger when continued downwards and, the second, a non-linear rectification, due to the correlation between gravity anomaly and topographic height, which results in the values continued to a level surface being systematically more positive than those on the topography.  相似文献   

7.
O. Bock  C. Thom 《Journal of Geodesy》2002,76(6-7):323-333
 A wide-angle airborne laser ranging system has been developed for the determination of relative heights of ground-based benchmarks in regional-scale networks (typically 100 laser reflectors spread over 100 km2). A first prototype demonstrated a 1–2 mm accuracy in radial distance measurement in a ground-based experiment in 1995. The first aircraft experiment was conducted in 1998, over a small area (1 km2) equipped with a network of 64 benchmarks. The instrument was modified before that experiment, in order to minimize echo superimposition due to the high density of benchmarks. New data processing algorithms have been developed, for the deconvolution of strongly overlapped echoes and a high a priori uncertainty in the aircraft flight path, and for the estimation of benchmark coordinates. A special methodology has been developed for the parameterization of these algorithms and of outlier detection tests. From a total of 2×104 pseudo-range measurements, that have been acquired from two flights composed of 30 legs each, only 3×103 remain after outlier detection. A positioning accuracy of 1.5 cm in the vertical coordinate (2.1 cm in the difference between the two flights) has been achieved. It is shown that the errors are normally distributed, with a nearly zero mean, and are consistent with the a posteriori uncertainty. It is also shown that the accuracy is limited mainly by the sensitivity of the photodetector used for this experiment (due to reduced response time). Another limiting factor is the effect of aircraft attitude changes during the measurements, which produces additional uncertainties in absolute distance measurements. It is planned to test new photodetectors with high internal gains. These should provide, in future experiments with smaller benchmark density, an improvement in signal-to-noise ratio of a factor of 5–10, leading to sub-centimeter vertical positioning accuracy. Received: 19 June 2001 / Accepted: 3 January 2002  相似文献   

8.
A method for filtering of geodetic observationwhich leaves the final result normally distributed, is presented. Furthermore, it is shown that if you sacrifice100.a% of all the observations you may be (1−β).100% sure that a gross error of the size Δ is rejected. Another and, may be intuitively, more appealing method is presented; the two methods are compared and it is shown why Method 1 should be preferred to Method 2 for geodetic purposes. Finally the two methods are demonstrated in some numerical examples.  相似文献   

9.
《测量评论》2013,45(12):357-367
Abstract

The only essential difference between geodetic triangulation and any other of the fifteen “orders” of triangulation—which were once proposed, and happily rejected, at an International Conference—is that steps are taken to secure the high degree of accuracy necessary over the large areas to be covered. Some of the steps taken to secure increased accuracy may well be used to insure economy in secondary work, as for instance the use of fewer readings of a large instrument, or the use of luminous signals in conditions of poor visibility; while any surveyor may at any time have to connect his work to a geodetic triangulation, using much the same methods.  相似文献   

10.
In November 1968, a marine geodetic control point was established in the Pacific Ocean at a water depth of6,200 feet. The control point (reference point) consists of three underwater acoustic transponders, two of which are powered with lead-acid batteries and the third with an underwater radioisotope power source “URIPS” with a10- to20- year life expectancy. Four independent measuring techniques (LORAC airborne line-crossing, satellite, ship inertial, and acoustic techniques) were used to measure and determine the coordinates of the control point. Preliminary analysis of the acoustic and airborne data indicates that high accuracies can be achieved in the establishment of geodetic reference points at sea. Geodetic adjustment by the method of variation of coordinates yielded a standard point error of±50 to±66 feet in determining the unknown ship station. The original location of the ship station as determined by shipboard navigation equipment was off by about1,600 feet. Paper previously published in the Proceedings of the Second Marine Geodesy Symposium of the Marine Technology Society.  相似文献   

11.
Since the publication of the Earth gravitational model (EGM)96 considerable improvements in the observation techniques resulted in the development of new improved models. The improvements are due to the availability of data from dedicated gravity mapping missions (CHAMP, GRACE) and to the use of 5′ × 5′ terrestrial and altimetry derived gravity anomalies. It is expected that the use of new EGMs will further contribute to the improvement of the resolution and accuracy of the gravity and geoid modeling in continental and regional scale. To prove this numerically, three representative Earth gravitational models are used for the reduction of several kinds of data related to the gravity field in different places of the Earth. The results of the reduction are discussed regarding the corresponding covariance functions which might be used for modeling using the least squares collocation method. The contribution of the EIGEN-GL04C model in most cases is comparable to that of EGM96. However, the big difference is shown in the case of EGM2008, due not only to its quality but obviously to its high degree of expansion. Almost in all cases the variance and the correlation length of the covariance functions of data reduced to this model up to its maximum degree are only a few percentages of corresponding quantities of the same data reduced up to degree 360. Furthermore, the mean value and the standard deviation of the reduced gravity anomalies in extended areas of the Earth such as Australia, Arctic region, Scandinavia or the Canadian plains, vary between −1 and +1 and between 5 and 10 × 10−5 ms−2, respectively, reflecting the homogenization of the gravity field on a regional scale. This is very important in using least squares collocation for regional applications. However, the distance to the first zero-value was in several cases much longer than warranted by the high degree of the expansion. This is attributed to errors of medium wavelengths stemming from the lack of, e.g., high-quality data in some area.  相似文献   

12.
Considering present attempts to develop a gradiometer with an accuracy between 10−3 E and 10−4 E, two applications for such a device have been studied: (a) mapping the gravitational field of the Earth, and (b) estimating the geocentric distance of a satellite carrying the instrument. Given a certain power spectrum for the signal and 10−4 E (rms) of white measurement noise, the results of an error analysis indicate that a six-month mission in polar orbit at a height of 200 km, with samples taken every three seconds, should provide data for estimating the spherical harmonic potential coefficients up to degree and order 300 with less than 50% error, and improve the coefficients through degree 30 by up to four orders of magnitude compared to existing models. A simulation study based on numerical orbit integrations suggests that a simple adjustment of the initial conditions based on gradiometer data could produce orbits where the geocentric distance is accurate to 10 cm or better, provided the orbits are 2000 km high and some improvement in the gravity field up to degree 30 is first achieved. In this sense, the gravity-mapping capability of the gradiometer complements its use in orbit refinement. This idea can be of use in determining orbits for satellite altimetry. Furthermore, by tracking the gradiometer-carrying spacecraft when it passes nearly above a terrestrial station, the geocentric distance of this station can also be estimated to about one decimeter accuracy. This principle could be used in combination with VLBI and other modern methods to set up a world-wide 3-D network of high accuracy.  相似文献   

13.
Knudsen 《Journal of Geodesy》1987,61(2):145-160
The estimation of a local empirical covariance function from a set of observations was done in the Faeroe Islands region. Gravity and adjusted Seasat altimeter data relative to theGPM2 spherical harmonic approximation were selected holding one value in celles of1/8°×1/4° covering the area. In order to center the observations they were transformed into a locally best fitting reference system having a semimajor axis1.8 m smaller than the one ofGRS80. The variance of the data then was273 mgal 2 and0.12 m 2 respectively. In the calculations both the space domain method and the frequency domain method were used. Using the space domain method the auto-covariances for gravity anomalies and geoid heights and the cross-covariances between the quantities were estimated. Furthermore an empirical error estimate was derived. Using the frequency domain method the auto-covariances of gridded gravity anomalies was estimated. The gridding procedure was found to have a considerable smoothing effect, but a deconvolution made the results of the two methods to agree. The local covariance function model was represented by a Tscherning/Rapp degree-variance model,A/((i−1)(i−2)(i+24))(R B /R E )2i+2, and the error degree-variances related to the potential coefficient setGPM2. This covariance function was adjusted to fit the empirical values using an iterative least squares inversion procedure adjusting the factor A, the depth to the Bjerhammar sphere(R E R B ), and a scale factor associated with the error degree-variances. Three different combinations of the empirical covariance values were used. The scale factor was not well determined from the gravity anomaly covariance values, and the depth to the Bjerhammar sphere was not well determined from geoid height covariance values only. A combination of the two types of auto-covariance values resulted in a well determined model.  相似文献   

14.
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost \(-\) 100 mm when comparing observations at 90 \(^\circ \) and at 0 \(^\circ \) elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of \(+120\)  mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.  相似文献   

15.
《测量评论》2013,45(24):79-85
Abstract

Except in the sphere of geodetic surveys, there seems to be a lamentable lack of helpful publications for the field surveyor. Comparative methods and standards of accuracy to be expected according to the type of instrument used are rarely to be found in print, and that is the only excuse for the following critical summary of some observations made during the winter of 1933–4.  相似文献   

16.
Within the International VLBI Service for Geodesy and Astrometry (IVS) Monte Carlo simulations have been carried out to design the next generation VLBI system (“VLBI2010”). Simulated VLBI observables were generated taking into account the three most important stochastic error sources in VLBI, i.e. wet troposphere delay, station clock, and measurement error. Based on realistic physical properties of the troposphere and clocks we ran simulations to investigate the influence of the troposphere on VLBI analyses, and to gain information about the role of clock performance and measurement errors of the receiving system in the process of reaching VLBI2010’s goal of mm position accuracy on a global scale. Our simulations confirm that the wet troposphere delay is the most important of these three error sources. We did not observe significant improvement of geodetic parameters if the clocks were simulated with an Allan standard deviation better than 1 × 10−14 at 50 min and found the impact of measurement errors to be relatively small compared with the impact of the troposphere. Along with simulations to test different network sizes, scheduling strategies, and antenna slew rates these studies were used as a basis for the definition and specification of VLBI2010 antennas and recording system and might also be an example for other space geodetic techniques.  相似文献   

17.
《测量评论》2013,45(78):338-348
Abstract

Radar can be applied to surveying for precise measuren1ent of long lines, and as a navigational aid and position-fixing device for an aircraft performing a photographic survey. Trials of the radar method have recently been carried out in Australia using a modified “Shoran” equipment. The results of a large number of radar measurements of six distances, varying from 160 to 310 miles in length, indicate that an accuracy of 7 parts in 105 can be achieved. Equipment errors constitute the immediate limit to accuracy, but reasonable modifications would yield a figure of 2 parts in 105. Radar measurements can be completed in a fraction of the time required by normal ground survey methods, since a measurement of upwards of a hundred miles is made in a single step.

As an aid to photographic surveying a straight-line track indicator actuated by data from the “Shoran” equipment has been designed and flight tested. Its performance enabled a pilot taking aerial photographs to keep the aircraft to within an average departure of less than 0.02 mile from any desired straight-line flight path.  相似文献   

18.
Seasonal and latitude dependent corrections to the gravity and height anomalies are developed in order to account for the neglect of the atmospheric masses outside the geold, when using Stokes’ equation. It is shown that the atmospheric correction to gravity at sea level is almost constant, equal to0.871 mgals with a variation of2 μ gals whereas the height anomaly correction varies between −0.1 cm and −1.3 cm. Further, when the combined latitudinal/seasonal dependence is neglected in the atmospheric corrections, the maximum error introduced is of the order of40 μ gals for the gravity corrections and0.7 cm for the height anomaly corrections.  相似文献   

19.
《测量评论》2013,45(90):166-174
Abstract

The old 10-ft. length standards of wrought iron, O1 and OI1, made for the Ordnance Survey in 1826 and 1856 respectively, are briefly described and some account is given of the purpose for which they were constructed.

Both these 10-ft. standards were measured in terms of the Yard in 1864, and one of them in terms of the Metre in 1906. They have recently been re-measured at the National Physical Laboratory, and it was found that, allowing for the known shortening of the Imperial Standard Yard since 1895, the 10-ft. Ordnance Survey standards have remained unchanged in length during the last 50 years or so. Furthermore, if it is assumed that the Imperial Standard Yard shortened rather more rapidly between 1853 and 1895 than it has since that date, then the 10-ft. standards can be said to have remained substantially unchanged in length for nearly a century.

Additional evidence for the change in the length of the Yard between 1853 and 1895 is provided by the results of measurements made in 1864 on some of the old Toise standards used for geodetic surveys on the Continent, and by some recent measurements made at the N.P.L. of another yard standard contemporary with the Imperial Standard.  相似文献   

20.
基于葵花-8卫星大气产品的地表下行短波辐射计算   总被引:2,自引:2,他引:0  
地表下行短波辐射DSSR(Downward Surface Shortwave Radiation)的准确估算在气候变化研究和地表太阳能估算等领域具有重要作用。新一代静止气象卫星葵花-8(Himawari-8)具有高达10 min的对地观测能力,为DSSR近实时估算提供了新机遇。然而,日本宇宙航空研究开发机构(JAXA)对外公开的葵花-8辐射产品中,没有将其反演的云、气溶胶产品作为DSSR的输入参数,从而没有形成一整套的DSSR估算算法流程,缺乏产品输出的一致性。大气中的云、气溶胶是DSSR的重要影响因子,本文重点考虑云、气溶胶对太阳辐射的影响,基于大气辐射传输模式RSTAR构建了DSSR查找表,开发了DSSR的快速计算方法,进而将JAXA葵花-8二级云、气溶胶产品(光学厚度,粒子有效半径等)作为快速化计算方法的输入参量,计算得到了DSSR。通过与JAXA葵花-8二级DSSR产品(JAXA DSSR)对比,发现两者具有很好的空间一致性。为了进一步评价本文的DSSR计算精度,分别选取了陆地(Yonsei)和海洋(0n_165e)的观测数据验证了2016年4、7、10和12月本文计算的DSSR和同时期的JAXA DSSR产品,验证结果显示两者的DSSR在两个观测站点均具有非常高的相关性(全天空、晴空和云天条件下的相关系数R均大于0.88)。在两个站点云天条件下的验证结果中,考虑了云相态并在冰云模型中使用了非球形冰晶粒子(六棱柱)来计算DSSR,获得了比JAXA DSSR更小的偏差。本文提出的快速化计算方法能快速准确地计算DSSR,可为计算地表辐射收支等研究提供重要数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号