首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The variation of radio luminosity with redshift and its effect on the analysis of the angular size-redshift (z) relation for a bright radio source sample (s 178 10Jy) has been investigated. By assuming a power law dependence of luminosity on redshift of the formP (1 +z), it was found that 4.4 (with correlation coefficientr 0.99) for at leastz 0.3. Correction for such a strongP – (1 +z) correlation when considering thez data for the sample led to a steeperz slope. This could be explained by assuming linear size evolution of the formD (1 +z)n withn = 2.8 – 3.3 consistent with both theoretical results and those obtained for more homogeneous source samples.  相似文献   

2.
J.-René Roy 《Solar physics》1976,48(1):149-158
Observations of a surge prominence event on 31 May 1971 are discussed. The continuum emission observed during the upward acceleration of the surge is attributed to the scattering of photospheric radiation by free electrons. The observed scattered light intensity amounts to a few times 10–5 that of the central disk intensity leading to a column density of n e L1020 cm–2. The actual electron density when taking into account the presence of inhomogeneities is n e 1012 cm–3. The dynamic and morphological behaviour of the surge is considered.  相似文献   

3.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

4.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

5.
The observations of the reddening of the distant galaxies and the weak diffuse radiation in the clusters of galaxies can be interpreted as a consequence of the presence of dust grains in the intergalactic medium. When allowance is made for the destruction of the grains in collision with particles of the hot gas, its lifetime is about 107–108 yr at a gas concentrationn g 10–3 cm–3. The detection of the infrared (IR) emission from the galaxy clusters might be the test for the proof of the presence of dust grains in the intergalactic medium. In this paper the estimates of the expected intensities and fluxes of IR emission for the spectral region 50–300 are presented for two galaxy clusters in Coma and Perseus. The parameters of the hot gas spatial distribution are chosen from X-ray observations. Having assumed that intergalactic dust can be ejected only from the galaxies, we used such a model for intergalactic dust grains which explains very well the interstellar dust effects. It is shown that the dust temperature, which is determined from the general energetic balance of the dust grains, can achieve some scores of degrees of Kelvin. Two models of the dust spatial distribution are considered. It is found that the maximum of IR flux for the Coma cluster lies near =100 and the same for the Perseus cluster near 50–70. The total fluxes of IR emission from these clusters are about 105–106 Jy and can be detected by modern observational methods.  相似文献   

6.
An approximate metric is found which represents a sphere of matter embedded in a background of dust. The use of this metric in conjunction with the Friedmann equations gives values of for the three possible values ofk as +6×10–36 (k=+1), +3×10–35 (k=0), +10–36 (k=–1). These values depend on data regarding clusters of galaxies, and are probably accurate to within an order of magnitude given the correctness of the assumptions on which their derivation rests.  相似文献   

7.
On May 21/22, 1980 the Hard X-Ray Imaging Spectrometer aboard the SMM imaged an extensive coronal structure after the occurrence of a two-ribbon flare on May 21, 20:50 UT. The structure was observed from 22:20 UT on May 21 until its disappearence at 09:00 UT on May 22.At 22:20 UT the brightest pixel in the arch was located at a projected altitude of 95 000 km above the zero line of the longitudinal magnetic field. At 23:02 UT the maximum of brightness shifted to a neighbouring pixel with approximately the same projected altitude. This sudden shift indicates that the X-ray structure consisted of (at least) two separate arches at approximately the same altitude, one of which succeeded the other as the brightest arch in the structure at 23:02 UT.From 23:02 UT onwards the maximum of brightness did not change its position in the HXIS coarse field of view. With a spatial resolution of 32 this places an upper limit of 1.1 km s-1 on the rise velocity of the arch. Thus, contrary to a similar arch observed on November 6/7, where rise velocities of the order of 10 km s-1 were measured in the same phase of development, the May 22 arch was a stationary structure at an altitude of 145000 km.The following values were estimated for the physically relevant quantities of the May 21/22 arch at the time of its maximum brightness (23:00 UT): temperature T 6.3 × 106 K, electron density n e 1.1 × 109 cm-3, total emitting volume V 5 × 1029 cm3, energy density 2.9 erg cm–3, total energy contents E 1.4 × 1030 erg, total mass M 9 × 1014 g.The top of the arch was observed at 145 000 km altitude within 1.5 hr after the flare occurrence. Since it seems unlikely that the structure already existed prior to the flare at 20:50 UT, the arch must have risen to its stationary position with an average velocity exceeding 17 km s–1 (possibly much faster). We speculate that the arch was formed very fast at the flare onset, when (part of) the active region loop system was elevated within minutes to the observed altitude.  相似文献   

8.
A model is constructed of a spherically symmetric self-gravitating condensation of neutral hydrogen immersed in anHii region. The structure of the condensation is represented by the isothermal gas sphere at a temperature of 100°K. Typical parameters of such a condensation compatible with the estimated ultra-violet radiation field in the central regions of the Orion Nebula are, mass 1M ; radius 1016 cm; mean density 10–15 gm cm–3. The condensations are not static configurations but evolve because of mass loss by ionization from their surfaces. Perhaps 5% become gravitationally unstable and collapse. The remainder act as sources of ionized gas which flows into the surrounding nebula.  相似文献   

9.
10.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

11.
Patrick C. Crane 《Solar physics》1998,177(1-2):243-253
Fourier analysis (DFT/CLEAN) of the international sunspot number (R) series since 1932 has revealed two long (250–500 days) and distinct episodes of solar activity exhibiting persistent 13 -day variations. The first episode lasts 500 days near the maximum of solar cycle 20, and the second, 250 days near the end of the current solar cycle 22. The solar radio flux density (F 10_7cm) series since 1947 has also been analyzed. During the first episode both solar indices exhibit distinct 27- and 13-day variations (the first report of 13-day variations in F 10_7cm). During the second episode neither index exhibits distinct 27-day variations and only R exhibits 13-day variations. Conditions affecting the appearance of 13-day variations in F 10_7cm are discussed.  相似文献   

12.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

13.
The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio I cell/I prominence for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as T –0.6. The density sensitive C iii (formed at T 9 × 104 K) line ratio I 1175/I 977 implies an average density 1.3 × 109 electrons cm–3 in the P-C interface and 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is 10 in most of the prominences studied; in two of the prominences, however, we cannot reject the possibility that o is large. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.Currently on leave from the Institute of Astronomy, Hawaii; at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, 80309.  相似文献   

14.
In this paper, accretion disc and synchrotron emission models have been used to analyse simultaneous IR-optical-UV data of the BL Lac object 1727+502. In the following, some of its properties have been discussed. It is shown that the temperature of the disc is about 19, 000°k, the mass of the central black hole isM 8 5.4, and the accretion ratio is 10–3 M /yr.  相似文献   

15.
On 23 May 1967 energetic (10–50 keV) solar flare X-rays were observed by the OGO-III ion chamber during the period 1808–2100 UT. The time-intensity profile for the X-ray event showed three distinct peaks at 1810, 1841 and 1942 UT. The second peak, which is equivalent to 2.9 × 10–3 ergs cm–2sec–1 above 20 keV, is the largest X-ray burst observed so far by the OGO-I and OGO-III ion chambers. The soft (2–12 Å) X-ray observations reported by Van Allen (1968) also show similar peaks, roughly proportional in magnitude to the energetic X-ray peaks. However, the intensity of energetic X-rays peaked in each case 5–10 min earlier than the soft X-ray intensity indicating a relatively hard photon energy spectrum near the peak of the energetic X-ray emission. The corresponding time-intensity profile for the solar radio emission also showed three peaks in the microwave region nearly coincident with the energetic X-ray peaks. The third radio peak was relatively rich in the metric emission. Beyond this peak both the energetic X-rays and the microwave emission decayed with a time constant of 8 min while the corresponding time constant for the soft X-rays was 43 min. In view of the earlier findings about the energetic X-rays it is indicated that the 23 May solar X-ray event was similar to those observed earlier. During the 23 May event the integral energy flux spectrum at the time of peak intensity is found to be consistent with the form e –E/E 0, E 0 being about 3.4 and 3.7 keV for the peaks at 1841 and 1942 UT, respectively. Assumption of a similar spectrum during the decay phase indicates that the spectral index E 0 decreased nearly exponentially with time.The OGO-III ion chamber, which is also sensitive to protons 12 MeV, observed a solar particle event starting at 2100 UT on 23 May. It could not be determined uniquely which of the two principal X-ray peaks was associated with the particle event, and in fact both may have contributed. The particle intensity reached its maximum value at 1003 UT on 25 May 1967. The equivalent peak radiation dosage was 24 R/hour behind the 0.22 g cm–2 thick aluminum wall of the chamber. This peak radiation dosage was considerably smaller than the maximum dosage (60 R/hour) during the 2 September 1966 solar particle event, the largest event observed so far by the OGO-I and OGO-III satellites. The temporal relationship between the solar X-ray and particle events on 23 May 1967 was similar to that observed in the solar flare events on 7 July 1966, 28 August 1966 and 27 February 1967.  相似文献   

16.
It is shown that a cylindrical plasma column supporting a longitudinal fieldB z and an azimuthal fieldB has a fastest-growing mode in whichkR 01 (k=wave number,R 0=radius of the column). If we assume that plasma is ejected from a galaxy to form a jet, filament or bridge of length 5 kpc,R 00.5 kpc, density 10–24 gm cm–3 with a dragged-out field of strengthB z 10–5 Gauss (from a parent field 10–6 Gauss), such a column must eventually fragment by the action of a hydromagnetic instability, breaking up into a number 10 of regularly-spaced condensations. It is, therefore, predicted that features like the M87 jet should show incipient nucleation with 3–10 knots, and that periodically-spaced objects of the type noted by Arp may have resulted from the action of such an instability.  相似文献   

17.
The relative abundances of cool neutral hydrogen, carbon monoxide and formaldehyde are studied using all the available observational data in the literature. The obtained mean valuesN H 1/ ,N H 1/N CO,N CO/ are approximately constant in the dark clouds of the solar neighbourhood and in the distant molecular clouds.The observed correlationsN CO,A v and ,A v show that formaldehyde can also be used as an indicator of molecular hydrogen. The ratioN H1/A v depends on densities and decays considerably in the ranges of visual absorptions in which the molecules become detectable (A v 2 mg); an average of /N H 110 is calculated for the dense dark clouds.Indications of systematic temperature gradiens T/A v are found for formaldehyde and neutral hydrogen inside the dark clouds, and qualitative comparisons are made with theoretical quantum mechanics calculations.The observed carbon monoxide and formaldehyde abundances, the free electron layer in the Galaxy, the distribution of neutral hydrogen in different states are only compatible if an ionization rate of 10–16 is accepted, provided presumably by 2 MeV protons of cosmic radiation.Three main states for neutral hydrogen and dust are identified from different kinds of observational data (21 cm line in emission, absorption in galactic radio sources and self-absorption in the hot gas background): (1) a homogeneous intercloud stratum of tenuous gas and dust with a galactic halfwidth of 350 pc and mean parametersn H=0.2 atom cm–3, spin temperatureT s 10000 K andn d 0.3 mg kpc–1; (2) cool gas and dust concentrated in spiral features with a galactic half-width of less than 100 pc, probably forming clouds with diffuse and indefinite limits, with mean parametersn H2 atom cm–3,T s <1100 K (probable average,T s =135 K) andn d 3 mg kpc–1; (3) dense gas and dust clouds with a mean diameter of 7 pc and mean parametersn H700 atom cm–3 (90% in a molecular state),T s 63 K andn d 1 mg pc–1 on which molecules as CO and H2CO are formed.The application of the Jeans criteria for gravitational instability shows that the dense clouds are gravitationally bound while the gas in the intermediate state (2) can be protected against collapse by the total internal energy in the medium increasing due to cosmic rays and the magnetic field in the Galaxy.The observed velocity halfwidths and galacticZ-halfwidths in states (1) and (2) are compatible with a total mass density in the galactic layer of 90M pc–2 (gas plus stars) according to the barometric equation.The relative abundancesN H 1/N CO, calculated from C12O and C13O data and comparisons with studies in the 21 cm emission line, show that the antenna temperatureT A + in the 2.6 mm line of C12O is a good indicator of the cool gas densities in the Galaxy. The possible application of this for studies in galactic structure is discussed and hypothetical distributions of carbon monoxide in the zones outside the galactic planeB=0° are presented.From a synthesis based on the results obtained, a cycle is postulated for the neutral hydrogen in the Galaxy: condensation and cooling of gas molecular formation gravitational collapse and star formation gas dissipation and heating by cosmic rays and UV radiation.  相似文献   

18.
We study the initiation and development of the limb coronal mass ejection (CME) of 15 May 2001, utilizing observations from Mauna Loa Solar Observatory (MLSO), the Solar and Heliospheric Observatory (SOHO), and Yohkoh. The pre-eruption images in various spectral channels show a quiescent prominence imbedded in the coronal void, being overlaid by the coronal arch. After the onset of rapid acceleration, this three-element structure preserved its integrity and appeared in the MLSO MK-IV coronagraph field of view as the three-part CME structure (the frontal rim, the cavity, and the prominence) and continued its motion through the field of view of the SOHO/LASCO coronagraphs up to 30 solar radii. Such observational coverage allows us to measure the relative kinematics of the three-part structure from the very beginning up to the late phases of the eruption. The leading edge and the prominence accelerated simultaneously: the rapid acceleration of the frontal rim and the prominence started at approximately the same time, the prominence perhaps being slightly delayed (4 – 6 min). The leading edge achieved the maximum acceleration amax 600 ± 150 m s–2 at a heliocentric distance 2.4 –2.5 solar radii, whereas the prominence reached amax 380± 50 m s–2, almost simultaneously with the leading edge. Such a distinct synchronization of different parts of the CME provides clear evidence that the entire magnetic arcade, including the prominence, erupts as an entity, showing a kind of self-similar expansion. The CME attained a maximum velocity of vmax 1200 km s–1 at approximately the same time as the peak of the associated soft X-ray flare. Beyond about 10 solar radii, the leading edge of the CME started to decelerate at a–20 m s–2, most likely due to the aerodynamic drag. The deceleration of the prominence was delayed for 10 –30 min, which is attributed to its larger inertia.  相似文献   

19.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

20.
Ostryakov  V.M.  Stovpyuk  M.F. 《Solar physics》1999,189(2):357-372
The energy and charge spectra of Fe ions accelerated in gradual events are calculated numerically. Our results are compared with the available observations. Stripping of Fe ions by thermal electrons and protons during ion acceleration in the solar corona results in the dependence of mean charge barq Feon energy. We consider the influence of varying plasma parameters (temperature T, number density N, and spectral index of turbulence S) on the charge distribution of iron. Our calculations indicate T106 K and N(0.5–1)×1010 cm–3at the accelerating site, provided the characteristic acceleration time is about 1 s. The calculated charge spectra for S>2 and S<2 turn out to be different, but some theoretical and experimental uncertainties do not yet allow this parameter to be extracted from observational data. The theoretically obtained charge distributions of Fe could be important in the light of ACE spacecraft data which are currently available for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号