首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》2007,236(1-2):1-13
The direct record of Late Miocene–Early Pliocene Antarctic Peninsula Ice Sheet expansions from a previously published seismostratigraphic study of the outer shelf at Ocean Drilling Program Site 1097 is compared to the glacial history we deduced from published proxy evidence within coeval sections on the adjacent continental rise. The proxies are sedimentary structures (laminated vs. massive/bioturbated facies) and clay minerals (predominantly smectite and chlorite contents) from Ocean Drilling Program Site 1095 located on the distal part of a large drift. The comparison shows that more sedimentary cycles are evident on the continental rise for three of the four diatom biozones we considered. This indicates that the continental-rise sedimentology may indeed be related to local or regional paleoenvironmental variability, including Antarctic Peninsula Ice Sheet grounding events on the adjacent outer continental shelf. If correct, this would be a promising result because unlike the outer continental shelf sequences drilled thus far, the continental rise record is relatively continuous and can be dated using paleomagnetic and biostratigraphic data. However, our study also shows that no objective criteria provide direct linkages between the glacial history we deduced from the two continental rise proxies and that previously derived from the continental-shelf seismic stratigraphy. Furthermore, the two sedimentologic proxies on the continental rise do not always provide a consistent picture of glacial history when compared against each other.  相似文献   

2.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

3.
The continental margin offshore of western Ireland offers an opportunity to study the effects of glacial forcing on the morphology and sediment architecture of a mid-latitude margin. High resolution multibeam bathymetry and backscatter data, combined with shallow seismic and TOBI deep-towed side-scan sonar profiles, provide the basis for this study and allow a detailed geomorphological interpretation of the northwest Irish continental margin. Several features, including submarine mass failures, canyon systems and escarpments, are identified in the Rockall Trough for the first time. A new physiographic classification of the Irish margin is proposed and linked to the impact of glaciations along the margin. Correlation of the position and dimensions of moraines on the continental shelf with the level of canyon evolution suggests that the sediment and meltwater delivered by the British–Irish Ice Sheet played a fundamental role in shaping the margin including the upslope development of some of the canyon systems. The glacial influence is also suggested by the variable extent and backscatter signal of sedimentary lobes associated with the canyons. These lobes provide an indirect measurement of the amount of glaciogenic sediment delivered by the ice sheet into the Rockall Trough during the last glacial maximum. None of the sedimentary lobes demonstrates notable relief, indicating that the amount of glaciogenic sediment delivered by the British–Irish Ice Sheet into the Rockall Trough was limited. Their southward disappearance suggests a more restricted BIIS, which did not reach the shelf edge south of 54°23′ N. The various slope styles observed on the Irish margin represent snapshots of the progressive stages of slope development for a glacially-influenced passive margin and may provide a predictive model for the evolution of other such margins.  相似文献   

4.
《Marine Geology》2003,193(1-2):93-127
This study is based on detailed investigation of sediment cores and high resolution seismics. We identified and describe five lithofacies on the Vøring Plateau and eight on the mid-Norwegian continental slope. The various lithofacies are mainly related to the fluctuations of the Fennoscandian Ice Sheet and the varying intensity of bottom currents and inflow of Atlantic water masses. Ocean circulation was highly variable between 40 and 22 14C ka BP, being vigorous during interstadials and sluggish during stadials. Between ca 22 and 15 14C ka BP the sedimentary environment was significantly influenced by fluctuations of the Fennoscandian Ice Sheet, repeatedly reaching the outermost shelf. These fluctuations are reflected in the sedimentary record as ice-rafted debris (IRD) accumulation peaks, deposition of stratified diamicton, and glacigenic debris flows on the continental slope. During this period the sediment accumulation rate increased, bottom currents influenced the sedimentary pattern, and surface waters were seasonally ice-free, indicating inflow of Atlantic waters. Subsequent to ca 15 14C ka BP the glacier influence decreased as the margin of the Fennoscandian Ice Sheet retreated to reach the coast before 12.5 14C ka BP. The modern sedimentary environment is characterised by relatively strong bottom current action, causing winnowing or non-deposition down to approximately 1000 m water depth.  相似文献   

5.
Seismic images of a collision zone offshore NW Sabah/Borneo   总被引:2,自引:0,他引:2  
Multichannel reflection seismic data from the southern South China Sea, refraction and gravity modelling were used to investigate the compressional sedimentary structures of the collision-prone continental margin off NW Borneo. An elongated imbricate deepwater fan, the toe Thrust Zone bounds the Northwest Borneo Trough to the southeast. The faults separating the individual imbricates cut through post-Early Miocene sediments and curve down to a carbonate platform at the top of the subsiding continental Dangerous Grounds platform that forms the major detachment surface. The age of deformation migrates outward toward the front of the wedge. We propose crustal shortening mechanisms as the main reason for the formation of the imbricate fan. At the location of the in the past defined Lower Tertiary Thrust Sheet tectonostratigraphic province a high velocity body was found but with a much smaller extend than the previously defined structure. The high velocity structure may be interpreted either as carbonates that limit the transfer of seismic energy into the sedimentary layers beneath or as Paleogene Crocker sediments dissected by remnants of a proto-South China Sea oceanic crust that were overthrust onto a southward migrating attenuated continental block of the Dangerous Grounds during plate convergence.  相似文献   

6.
Records of glaciomarine deposition recovered from the West Antarctic continental margin in the Amundsen Sea allow the reconstruction of the behaviour of the West Antarctic Ice Sheet (WAIS) in response to the natural climatic changes of the last 1.8 million years. Contents of gravel-sized and lithogenic components represent the input and redeposition of glaciogenic debris, whereas variations in the proportions of the calcareous sediment fraction reflect palaeoproductivity changes. All proxies, which are regarded as sensitive to a WAIS collapse, changed markedly during the global climatic cycles, but do not confirm a complete disintegration of the WAIS during the Pleistocene.  相似文献   

7.
Multichannel seismic data from the eastern parts of the Riiser-Larsen Sea have been analyzed with a sequence stratigraphic approach. The data set covers a wide bathymetric range from the lower continental slope to the abyssal plain. Four different sequences (termed RLS-A to RLS-D, from deepest to shallowest) are recognized within the sedimentary section. The RLS-A sequence encompasses the inferred pre-glacial part of the deposits. Initial phases of ice sheet arrival at the eastern Riiser-Larsen Sea margin resulted in the deposition of multiple debris flow units and/or slumps on the upper part of the continental rise (RLS-B). The nature and distribution of these deposits indicate sediment supply from a line or a multi-point source. The subsequent stage of downslope sediment transport activity was dominated by turbidity currents, depositing mainly as distal turbidite sheets on the lower rise/abyssal plain (RLS-C). We attribute this to margin progradation and/or a more focussed sediment delivery to the continental shelf edge. As the accommodation space on the lower rise/abyssal plain declined and the base level was raised, the turbidite channels started to backstep and develop large channel–levee complexes on the upper parts of the continental rise (RLS-D). The deposition of various drift deposits on the lower rise/abyssal plain and along the western margin of the Gunnerus Ridge indicates that the RLS-D sequence is also associated with increased activity of contour currents. The drift deposits overlie a distinct regional unconformity which is considered to reflect a major paleoceanographic event, probably related to a Middle Miocene intensification of the Antarctic Circumpolar Current.  相似文献   

8.
The distribution of seismic units in deposits of the basins near the Antarctic–Scotia plate boundary is described based on the analysis of multichannel seismic reflection profiles. Five main seismic units are identified. The units are bounded by high-amplitude continuous reflectors, named a to d from top to bottom. The two older units are of different age and seismic facies in each basin and were generally deposited during active rifting and seafloor spreading. The three youngest units (3 to 1) exhibit, in contrast, rather similar seismic facies and can be correlated at a regional scale. The deposits are types of contourite drift that resulted from the interplay between the northeastward flow of Weddell Sea Bottom Water (WSBW) and the complex bathymetry in the northern Weddell Sea, and from the influence of the Antarctic Circumpolar Current and the WSBW in the Scotia Sea. A major paleoceanographic event was recorded by Reflector c, during the Middle Miocene, which represents the connection between the Scotia Sea and the Weddell Sea after the opening of Jane Basin. Unit 3 (tentatively dated ∼Middle to Late Miocene) shows the initial incursions of the WSBW into the Scotia Sea, which influenced a northward progradational pattern, in contrast to the underlying deposits. The age attributed to Reflector b is coincident with the end of spreading at the West Scotia Ridge (∼6.4 Ma). Unit 2 (dated ∼Late Miocene to Early Pliocene) includes abundant high-energy, sheeted deposits in the northern Weddell Sea, which may reflect a higher production of WSBW as a result of the advance of the West Antarctic ice-sheet onto the continental shelf. Reflector a represents the last major regional paleoceanographic change. The timing of this event (∼3.5–3.8 Ma) coincides with the end of spreading at the Phoenix–Antarctic Ridge, but may be also correlated with global events such as initiation of the permanent Northern Hemisphere ice-sheet and a major sea level drop. Unit 1 (dated ∼Late Pliocene to Recent) is characterized by abundant chaotic, high-energy sheeted deposits, in addition to a variety of contourites, which suggest intensified deep-water production. Units 1 and 2 show, in addition, a cyclic pattern, more abundant wavy deposits and the development of internal unconformities, all of which attest to alternating periods of increased bottom current energy.  相似文献   

9.
Previous GPS-based geodetic studies and onland paleoseismologic studies in Trinidad have shown that the 50-km-long, linear, onland segment of the Central Range fault zone (CRFZ) accommodates at least 60% of the total rate of right-lateral displacement (∼20 mm/yr) between the Caribbean and South American plates. 2D and 3D seismic reflection data from a 60-km-long and 30-km-wide swath of the eastern shelf of Trinidad (block 2AB) were used to map the eastern offshore extension of this potentially seismogenic and hazardous fault system and to document its deeper structure and tectonic controls on middle Miocene to recent clastic stratigraphy. Two unconformity surfaces and seafloor were mapped using 3D seismic data to generate isochron maps and to illustrate the close control of the CRFZ and associated secondary faults on small, clastic basins formed along its anastomosing strands and the east-west-striking North Darien Ridge fault zone (NDRFZ) that exhibits a down-to-the-north normal throw. Mapped surfaces include: 1) the middle Miocene angular unconformity, a prominent, regional unconformity surface separating underlying thrust-deformed rocks from a much less deformed overlying section; this regional unconformity is well studied from onland outcrops in Trinidad and in other offshore areas around Trinidad; 2) a Late Neogene angular unconformity developed locally within block 2AB that is not recognized in Trinidad; and 3) the seafloor of the eastern Trinidad shelf which exhibits linear scarps for both the CRFZ and the east-west-striking North Darien Ridge fault zone. Clastic sedimentary fill patterns identified on these isochron maps indicate a combined effect of strike-slip and reverse faulting (i.e., tectonic transpression) produced by active right-lateral shear on the CRFZ, which is consistent with the obliquity of the strike of the fault to the interplate slip vector known from GPS studies in onland Trinidad. The NDRFZ and a sub-parallel and linear family of east-west-striking faults with normal and possibly transtensional motions also contributed to the creation of accommodation space within localized, post-middle Miocene clastic depocenters south of the CRFZ.  相似文献   

10.
The results of a single channel seismic reflection survey and of a micropaleontological examination of diatom remains in bottom sediment samples on the shelf and continental slope of the Peter the Great Bay area are presented. The composition and age of the sedimentary layer were studied using integrated seismic, micropaleontological and geological data. The continental slope was formed not later than at the beginning of the Early Miocene. The slope is covered with Middle Miocene-Pliocene sediments. The sedimentary thickness on most of the slope is 0.2–0.4 s. The maximum thickness (0.8–1.0 s) is observed within the areas of submarine canyons and valleys. The thickness of the Early Miocene-Pliocene sediments on the shelf is 0.2–0.4 s. On the shelf break and in a southwest-trending trough of the acoustic basement, it increases up to 1.0 s. Two uncomformities were identified in the sediments of the shelf area. The proposed age of the upper uncomformity is 10.0–8.5 My B.P.; it represents the result of a global sea level fall. The age of the lower uncomformity is unknown.  相似文献   

11.
Termination V, the transition from glacial marine isotope stage 12 to interglacial stage 11–425 ka, is the largest deglaciation of the late Pleistocene and culminated with temperatures potentially warmer than present. Coastal geomorphic and stratigraphic evidence provides estimates of a sea-level high-stand 20 m above present at the time (Hearty et al. in Geology 27(4):375–378, 1999). Such sea-level rise would require disintegration of the Greenland Ice Sheet and West Antarctic Ice Sheet as well as part of the East Antarctic Ice Sheet (Raynaud et al. in Earth’s climate and orbital eccentricity: the marine isotope stage 11 question. Geophysical monograph 137. American Geophysical Union, Washington, 2003). Lithic fragments in deep-sea sediments >150 μm at Site 704 in the South Atlantic Ocean were quantified. A large multipronged peak in concentration of this ice-rafted debris consisting of clear minerals, rose-colored transparent minerals, and ash punctuates glacial Termination V. It coincides with a brief two-pronged 1 ‰ reversal to heavier isotopic values from ~2.4 to ~3.4 ‰ at ~416 ka interpreted to reflect cooling resulting from influx of a large number of icebergs. The peak in ice-rafted debris also coincides with a 1 ‰ decrease in carbon isotopic ratios interrupting the ~2 ‰ increase in carbon isotope values across the entirety of Termination V. This is interpreted to reflect a reduction or shutdown in North Atlantic Deep Water formation and attendant Circumpolar Deep Water upwelling at the site and is also consistent with a shift in storage of carbon and carbonate from the deep sea to continental shelves resulting from a dramatic sea-level high-stand. Consequently, the lithic record at Site 704 lends support for the upper end of sea-level estimates based upon land-based evidence that requires a substantial contribution from the East Antarctic Ice Sheet. However, caution is warranted as differences with lithic records from Site 1089, 1090 and 1094 suggest sea-surface temperatures may have also affected lithic concentration through controls on iceberg trajectories and decay.  相似文献   

12.
高雅  唐勇  解习农 《海洋科学》2020,44(1):157-164
在阅读相关文献资料的基础上,分析了莫桑比克盆地的区域性幕式构造演化,并进一步总结归纳了其沉积充填特征。研究显示该盆地为东非边缘陆内裂谷盆地,以晚侏罗世破裂不整合面为界划分为断陷期及坳陷期,断陷期为陆相湖盆沉积充填,进入坳陷期后逐渐从海陆过渡相向浅海相和深水相演变。晚白垩世末和渐新世末两次构造抬升,使得盆地沉积环境及物源供应发生明显改变,也逐渐从深水相向滨浅海相或三角洲相演变。  相似文献   

13.
The Cenozoic shelf margin of the Amazon Mouth Basin is characterized by a thick prograding prism of siliciclastic sediments. This prism, composed mainly of Upper Miocene and younger sediments, overlies a Lower Tertiary carbonate shelf. Two tectonic–sedimentary models for the area were developed with the aid of new deep-reflection seismic data. Gravitational tectonics dominate the regional geological framework. Tensional stresses are created near the shelf margin, and compressional features dominate at the base of the slope. The morphology of this compressional zone is closely associated with the St. Paul Fracture Zone and the boundary between continental and oceanic crusts.  相似文献   

14.
Travel-time inversion is applied to seismic data to produce acoustic velocity images of the upper 800 m of the South Shetland margin (Antarctic Peninsula) in three different geological domains: (i) the continental shelf; (ii) the accretionary prism; (iii) the trench. The velocity in the continental shelf sediments is remarkably higher, up to 1000 m/s at 600–700 m below seafloor, than that of the other two geological domains, due to the sediment overcompaction and erosion induced by the wax and waning of a grounded ice sheet. Pre-stack depth migration was applied to the data in order to improve the seismic image and to test the quality of the velocity fields. Where the Bottom Simulating Reflector (BSR) is present, positive and negative velocity anomalies were found with respect to a reference empirical velocity profile. The 2D-velocity section was translated in gas hydrate and free gas distribution by using a theoretical approach. The analysis revealed that the BSR is mainly related to the presence of free gas below it. The free gas is distributed in the area with variable concentration and thickness, while the gas hydrate is quite uniformly distributed across the margin.  相似文献   

15.
Erosional unconformity surfaces are key indicators for the variations in eustatic sea level, ocean dynamics and climatic conditions which significantly affect depositional environments of sedimentary successions. Using a dense grid of 2D seismic data, we present new evidence from a frontier basin, the offshore Durban Basin, of a mid-Miocene age erosional unconformity that can be correlated with analogous horizons around the entire southern African continental margin.In the Durban Basin, this unconformity is typified by the incision of a mixed carbonate-siliciclastic wedge and ramp margin by a series of submarine canyons. Epeirogenic uplift of southern Africa characterised this period, with erosion and sediment bypass offshore concomitant with increases in offshore sedimentation rates. Although epeirogenic uplift appears to be the dominant mechanism affecting formation of the identified sequence boundary, it is postulated that an interplay between global eustatic sea-level fall, expansion of the east Antarctic ice sheets, and changes in deep oceanic current circulation patterns may have substantially contributed to erosion during this period.  相似文献   

16.
南海北缘属于非火山型大陆边缘。过去的研究在洋陆转换带北部的地震剖面上曾观测到一些疑似岩席和火山体的高振幅异常体, 但对这些高振幅异常体的属性却缺乏进一步的研究。本文在南海东北部大陆坡上的两个多道地震剖面(SO1E和SOY)中也发现了一个长度超过15km、厚度约为1.2km的巨大高振幅异常体, 它为研究者提供了一个探究洋陆转换带北部是否存在岩浆活动的机会。本研究对该高振幅异常体进行了速度分析与AVO(amplitude variation with offset)分析。结果表明, 与周围岩层相比, 该高振幅异常体内部有较高的P波速度和泊松比。结合区域地质背景和异常体内部的反射特征及大小形状, 推测该高振幅异常体为火成侵入岩, 并将其进一步归类为岩盖, 揭示了中新世以后南海北部洋陆转换带北部曾发生过多期次的岩浆活动。  相似文献   

17.
 The Cenozoic shelf margin of the Amazon Mouth Basin is characterized by a thick prograding prism of siliciclastic sediments. This prism, composed mainly of Upper Miocene and younger sediments, overlies a Lower Tertiary carbonate shelf. Two tectonic–sedimentary models for the area were developed with the aid of new deep-reflection seismic data. Gravitational tectonics dominate the regional geological framework. Tensional stresses are created near the shelf margin, and compressional features dominate at the base of the slope. The morphology of this compressional zone is closely associated with the St. Paul Fracture Zone and the boundary between continental and oceanic crusts. Received: 20 August 1996 / Revision received: 11 June 1998  相似文献   

18.
南极印度洋扇区分布了许多南极底层水的生成区,此海域海水盐度变化对全球的气候变化有着深远影响。本文采用EN4再分析数据、实测海豹资料和WOD18数据,结合大气再分析和海冰密集度数据,对南极印度洋扇区表面盐度长期变化及其对大尺度环流异常的响应进行探究。2008年以来,南极沿岸出现显著的海表面持续性高盐异常,其中印度洋扇区变化最为显著,表层高盐水主要集中在达恩利冰间湖附近与沙克尔顿冰架以北的海域。沿岸海域的高盐陆架水向北扩张且影响深度不断加深,高盐的绕极深层水上涌也更加明显。此高盐异常与南极涛动(Antarctic Oscillation,AAO)、印度洋偶极子(Indian Ocean Dipole,IOD)两种大尺度环流密切相关。AAO与IOD正位相下,西风显著增强,促进海冰大量生成,为海表面提供了大量的盐通量。同时,海表面出现更显著的风场旋度负异常与低压异常,促进高盐深层水上涌,对高盐异常有重要维持作用。此外,纬向风剪切与蒸发增强也是影响该高盐异常的重要局地过程。  相似文献   

19.
We have obtained improved images of a debris flow deposit through the reprocessing of multichannel seismic reflection data between Drifts 6 and 7 of the continental rise of the Pacific margin of the Antarctic Peninsula. The reprocessing, primarily aimed at the reduction of noise, relative to amplitude preservation, deconvolution, also included accurate velocity analyses. The deposit is dated as upper Pliocene (nearly 3.0 Ma) via correlation to Sites 1095 and 1096 of the Ocean Drilling Program (ODP) Leg 178. The estimated volume is about 1800 km3 and the inferred provenance from the continental slope implies a run out distance exceeding 250 km. The dramatic mass-wasting event that produced this deposit, unique in the sedimentary history of this margin, is related to widespread late Pliocene margin erosion. This was associated with a catastrophic continental margin collapse, following the Antarctic ice sheet expansion in response to global cooling. The seismic data analysis also allowed us to identify diffractions and amplitude anomalies interpreted as expressions of sedimentary mounds at the seafloor overlying narrow high-velocity zones that we interpret as conduits of fluid expulsion hosting either methane hydrates or authigenic carbonates. Fluid expulsion was triggered by loading of underlying sediments by the debris flow deposits and may have continued until today by input of fluids from sediment compaction following the deep diagenesis of biogenic silica.  相似文献   

20.
The petrographic and micropaleontological studies of the rocks in the sedimentary cover of the Primorye continental slope in the area of Vladimir Bay in the Sea of Japan made it possible to establish that the sedimentary cover is represented in this area by two different facial complexes of Late Miocene rocks. The first facial complex consists of terrigenous rocks (siltstones, sandstones, and conglomerates) that were accumulated under relatively shallow-water conditions of the shelf and the uppermost part of the continental slope. The second one is formed by diatomaceous-clayey rocks under more deep-water conditions, mainly in the upper part of the continental slope. The carbonate nodules that are widely distributed among the deposits of the first complex but are also recorded in the second one were formed as a result of diagenetic processes in the terrigenous or silicious-terrigenous sediments that had been formed. With respect to their age, the Late Miocene deposits are characterized by a full succession of diatomaceous zones over 10.0–5.5 mln yr. The sediments of the first facial complex accumulated during the first third of the Late Miocene (10.0–8.5 mln yr), while those of the second began to accumulate somewhat later, but their accumulation continued until the late Miocene (9.2–5.5 mln yr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号