首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》2006,225(1-4):103-127
This paper examines the spatial and temporal variability in the volumetric sediment balance of Allen Creek marsh, a macro-tidal salt marsh in the Bay of Fundy. The volumetric balance was determined as the balance of inputs of sediments and organic matter via accretion on the marsh surface and outputs of sedimentary material primarily due to erosion of the marsh margin. Changes in marsh surface elevation were measured at 20 buried plates and 3 modified sediment elevation tables from 1996–2002, and detailed margin surveys were conducted in 1997, 1999 and 2001 using a differential global positioning system. Changes in surface area were calculated using GIS overlay analysis and used in conjunction with accretion and erosion data to derive volumetric estimates of gains and losses of sedimentary material in the marsh system.Currently the volumetric sediment balance at Allen Creek marsh is positive. However the processes of erosion and accretion demonstrate seasonal, annual and spatial variability. Inputs to the system include deposition on the marsh surface from sediment laden waters and from ice rafting of sediments. Sediment is deposited onto the marsh surface year round, even during the winter when vegetation cover is sparse, and the amount of deposition in general is not significantly correlated with the frequency of tidal inundations. Based on the data from 1996 to 2002, the mid and high marsh zones experience mean accretion rates of approximately 1.4 cm year 1 whereas accretion rates in the low marsh region are statistically significantly lower (0.8 cm year 1). The absolute amount of accretion varies between seasons and from year to year. The main loss to the marsh is through erosion of the marsh margin cliffs which can remove a comparatively large volume of sedimentary material in one mass wasting event and which also decreases the vegetated surface area available for deposition from sediment laden waters. The volume of material removed from the marsh margin almost tripled between 1997 (169 m3) and 2001 (502 m3) following breaching of the side of a tidal creek channel, altering the patterns of margin erosion and deposition in the marsh system. During this time, however, other sheltered areas of the marsh system, such as along the tidal creek banks, showed evidence of new vegetation growth, increasing the amount of vegetated surface area available for deposition.The processes of erosion and deposition on the marsh surface exhibit considerable spatial variability, with different regions of the marsh being more or less sensitive to seasonal variability in the dominant controls influencing sediment deposition and erosion in this system, namely wave activity, vegetation, ice and water depths. A key factor in predicting how a marsh will evolve and respond to a number of different controls, e.g. sea-level rise or reduced sediment supply, is to quantify both accretion of the marsh surface and erosion of the marsh margin, evaluating the marsh system as a volumetric whole. This study demonstrates that a marsh system should be assessed in three dimensions rather than simply as a surface of accumulation. This is particularly important for open coastal marshes exposed to the erosive action of waves.  相似文献   

2.
Vertical distributions of dissolved species across the sediment–water interface (SWI), including major cations (sodium, potassium, magnesium, calcium), minor cations (lithium, strontium, barium), redox sensitive species (dissolved manganese, iron, sulfate, sulfide, ammonium) and other chemical parameters (pH, alkalinity, soluble reactive phosphorous, dissolved silica) were studied in a Mediterranean lagoon used for intensive shellfish farming. In order to quantify the impact of this activity on diagenetic processes and the influence of seasonal changes, two stations contrasted with respect to organic carbon fluxes were sampled in Thau lagoon from March 2001 to August 2002 during four field campaigns in winter, spring, summer and fall. Well-defined layers enriched with redox sensitive species were observed following the conventional sequence of early diagenetic reactions. However, differences were observed between both stations in depths and thickness layers. Concentration gradients extended down to more than 92 cm depth at the central position of the lagoon (station C4 – 8 m depth) and down to 40 cm depth inside shellfish farming zones (station C5 – 9 m depth). Station C4 showed an unusual diagenetic signature: sharp dissolved oxygen, iron, nitrate and manganese gradients existed at the SWI but gradients of dissolved sulfide and alkalinity as well as other parameters (dissolved silica, Ba, etc.) were recorded only from 25 to 30 cm depth downward. Seasonal changes were observed in pore water composition as deep as 30–50 cm in station C4 (only 15 cm in station C5). The center of the lagoon is not directly subjected to biodeposits deriving from shellfish activity. Isotopic and bioturbation data allowed to rule out a reworking of the sediment deeper than a few centimeters. In addition to organic content of the sediment, physical parameters were likely to induce the 10–20 cm gap between dissolved iron and sulfide profile as well as the higher vertical extent of diagenetic sequence observed at station C4. Conversely to station C5, station C4 underwent stronger currents and wave effect probably generating advective transport of water through the sediment, but no permeability data were available to confirm this hypothesis. During summer, climatic conditions generated vertical stratification of the water column and transient suboxic conditions at the bottom. Such conditions drove the upward shift of redox fronts, compacting the diagenetic sequence. These effects were reinforced at station C5 by shellfish and its farm structures (mainly attenuation of current and increased heat absorption).  相似文献   

3.
Solid sediment, pore and epibenthic waters were collected from the Thau lagoon (France) in order to study the post-depositional partition and mobility of mercury in organic rich sediment. Total Hg (HgT) and monomethylmercury (MMHg) profiles were produced in both dissolved and solid phases. The distribution of HgT in the solid phase appeared to be related to the historical changes in the Hg inputs into the lagoon. HgT was in equilibrium between solid and solution phases in the sulfidic part of the cores, with a mean log Kd of 4.9 ± 0.2. The solid phase appeared to be a source of HgT for pore water in the upper oxic to suboxic parts of the cores. The MMHg represented a small fraction of HgT: 3–15% and 0.02–0.80% in the dissolved and solid phases, respectively. Its distribution was characterized by a main peak in the superficial sediments, and another deeper in the core within the sulfide-accumulating zone. In addition, high dissolved MMHg concentrations and methylated percentage were found in the epibenthic water. Ascorbate (pH 8) dissolution of the sediments and analyses of the soluble fraction suggest that the amorphous oxyhydroxides played a major role in controlling total and methylmercury mobility throughout the sediment–water interface. These features are discussed in terms of sources, transfer and transformations. Diffusive fluxes of HgT and MMHg from sediment to the water column for the warm period were estimated to be 40 ± 15 and 4 ± 2 pmol m−2 d−1, respectively.  相似文献   

4.
We have developed, deployed, and tested a novel probe for study of the geochemistry of sediment pore waters based upon Raman spectroscopy. The Raman technique has already been used successfully for in situ measurements of targets of scientific interest including gas and hydrothermal vents and complex gas hydrates, but sediment geochemistry has so far been an intractable problem since the sediments themselves are strongly fluorescent and typically only very small sample volumes are obtainable. The 35 cm long probe extracts pore fluids through a 10 μm sintered metallic frit and draws the sample through a 2 mm diameter channel into a sapphire windowed optical cell within which the laser beam is focused and the spectrum recorded. The dead volume of the system is ~1 ml and the instrument is ROV deployable with activation of probe insertion and sample withdrawal under direct operator control. The unique features of this mode of detection include observation of the sulfate gradient in marine pore waters as an indicator of diagenesis, direct measurement of the dissolved sulfide species H2S and HS?, and measurement of dissolved methane; all of which are of primary geochemical interest. Quantitative analysis is achieved by area ratio to known water peaks and from standard calibration curves with a precision of ±5%. We find only very small fluorescence from pore waters measured in situ, but observe rapid increases in fluorescence from cores returned to the surface and exposed to oxygen.  相似文献   

5.
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m−2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period.The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ∼1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring–summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as ‘high recycling, low export’.  相似文献   

6.
A combination of field and numerical modeling methods was used to assess porewater movement in a narrow (20 m) Spartina marsh which was flooded regularly by tidal waters. Soil composition and soil hydraulic properties did not vary across the marsh or with depth. Hydraulic head was monitored on a transect perpendicular to the creekbank. During exposure of the marsh surface, hydraulic gradients were predominantly horizontal; vertical gradients were small or zero. Subsurface flow was directed from the marsh interior toward the creekbank. Approximately 141 of pore water were discharged laterally to the adjacent tidal creek per meter of creekbank over a complete tidal cycle.A numerical hydrological model was modified to simulate subsurface hydraulics in the creekbank vicinity of regularly flooded tidal marshes. The model was parameterized to represent soil conditions, tidal fluctuations and topography at the field site. Observed changes in hydraulic head over complete tidal cycles were accurately predicted by the model. Model simulations identified the vertical infiltration of creek water into the marsh surface at the onset of tidal flooding as the primary source (66%) for the replacement of water drained at the creekbank. Significant replacement (31%) also occurred as discharge from the interior marsh. Horizontal recharge at the creekbank was minimal (3%).A sensitivity analysis was conducted with the model to assess the relative importance of geomorphological factors and soil properties in controlling pore water export at the creekbank of tidal marsh soils. Each parameter was varied systematically over a realistic range for field conditions. Changes in marsh elevation exerted greater control over creekbank discharge than changes in soil hydraulic properties. More rapid turnover of pore water near creekbanks of higher elevation marshes is hypothesized.  相似文献   

7.
Density, taxonomic composition at higher taxon level and vertical distribution of benthic macrofaunal communities and sediment characteristics (pore water, nitrogen, organic carbon, sulfur, C/N ratio, n-alcohol biomarkers) were examined at three deep sites on the Congo–Gabon continental margin. This study was part of the multidisciplinary BIOZAIRE project that aimed at studying the deep benthic ecosystems in the Gulf of Guinea. Sampling of macrofaunal communities and of sediment was conducted during three cruises (January 2001, December 2001 and December 2003) at two downslope sites (4000 m depth), one located near the Congo submarine channel (15 km in the south) and the other one far from the channel (150 km in the South). The third area located 8 km north of the Congo channel in the surroundings of a giant pockmark at 3160 m depth was sampled during one cruise in December 2003.At these three locations the macrofaunal communities presented relatively high densities (327–987 ind. 0.25 m−2) compared with macrofaunal communities at similar depths; that is due to high levels of food input related to the Congo river and submarine system activities that affect the whole study area. The communities were different from each other in terms of taxonomic composition at higher taxon level (phylum, class, order for all the groups except for the polychaetes classified into families). The polychaetes dominated the communities and were responsible for the increase in densities observed at both deep sites (4000 m) between January 2001 and December 2003 whereas the tanaidaceans, the isopods and the bivalves were the other most abundant taxa responsible for the spatial differences between these sites. The community at 3150 m differed from the two deep communities by higher abundances in bivalves, nemerteans and holothuroids. The composition of the polychaete community also differed among sites.In the vicinity of the Congo channel, the expected positive effect of the additional organic matter transported through the turbiditic currents on to the surrounding benthic communities was not observed, as the increase in densities during the study period was higher at the site located away from the Congo channel than near the channel (80% vs 30%). That may be due to the low food value of the organic matter of terrestrial origin carried through the turbidites, and/or to the disturbance caused by these turbidites. Conversely, far from the channel the macrofaunal communities benefit from organic matter of higher energetic value originating mainly from marine sources, but also from continental sources, carried by the Congo plume or by near-bed currents across or along the continental slope. Spatial and temporal variability in trophic and physical characteristics of the sediment habitat at both deep sites also affected the vertical distribution of the macrofaunal communities.The activities of the very active Congo system structure the deep macrofaunal communities on a large area in terms of densities, composition and vertical distribution. The food input is enhanced at regional scale as well as the heterogeneity of the sediment characteristics, mainly in terms of organic matter quality (marine vs terrigenous). In turn, the densities are enhanced as well as the regional diversity of the macrofaunal communities in terms of taxonomic composition and distribution.  相似文献   

8.
A numerical boundary integral equation model has been used to simulate tidally driven transient variations in pore water seepage from salt marsh sediments into tidal channels and its subsequent recharge by tidal inundation. In general the results show that the maximum seepage discharge occurs at or near the intersection of the creek bank and the channel water surface. Over a tidal cycle typically two-thirds of the total seepage discharge occurs through the creek bank with only about a third discharging from the channel bottom. Of the creek-bank discharge up to a third occurs through the seepage face that develops above the tide line at tidal stages below mean tide. These results indicate that placement of seepage meters only on the channel bottom will not give samples or measures representative of the total seepage. Of the total recharge only about 5% occurs through the upper part of the creek bank with the remainder infiltrating vertically through the marsh platform during early stages of tidal submergence. For the platform recharge about 80% occurs within 3 m of the creek bank. Thus, most of the water that seeps out of marsh sediments is derived from sediments that lie within several meters of the creek bank and accordingly has had a relatively short residence (one to two years) in the marsh. Compared to the distal portion of the marsh this relatively rapid flushing may enhance the productivity of Spartina alterniflora in the creek-bank environment and control the differential generation of radium quartet isotopes.  相似文献   

9.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

10.
We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L−1 h−1 in the top 20 m, 8–28 nmol peptide L−1 h−1 between 100 and 300 m (O2-depleted zone), and 14–19 nmol peptide L−1 h−1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9–26, 3–17, and 6 nmol L−1 h−1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.  相似文献   

11.
This study was undertaken to elucidate the impact of early diagenetic processes on the accumulation of trace metals in Sapelo Island saltmarsh sediments as a function of time, space and sediment properties. Samples were collected from three sites in summer (May 1997) and winter (January 1998) along a transect from an unvegetated Creek Bank through a vegetated Tidal Levee to the vegetated midmarsh with evident lateral heterogeneity caused by hydrologic regime, macrophytes and microbial and macrofaunal activities. A suite of trace metals (As, Ba, Cr, Co, Cu, Cd, Mo, Ni, Pb, Th, Ti, U, V, Zn and Zr) was analyzed to obtain their depth-distribution at the three sites. Spatially marked differences were observed, that were primarily related to hydraulic flushing of trace metals away from the sites in high-energy regimes, rapid downward mixing and reworking of sediment via bioturbation, and below-ground degradation and production of Spartina biomass. Although sulfate reduction and the formation of acid volatile sulfide and pyrite were dominant processes throughout the marsh, the trace metal scavenging role of sulfides was not apparent. However, possible sulfurization of organic matter, leading to enhanced trapping of trace metals with organic carbon, may have played an important role in sequestration of trace metals.No similarity was observed visually between the depth trends of trace metals and sediment properties (grain size, iron-oxyhydroxide content, acid volatile sulfides and pyrite content) that are known to play a major role in trace metal partitioning. Only organic carbon content closely followed the trace metal profiles at all the three sites. Minor variation in depth-integrated sediment trace metal content was observed seasonally at each of the three sites. Furthermore, the depth trend of profiles of individual trace metals also did not vary significantly over the seasons either.  相似文献   

12.
Iodide oxidation to iodate in near-surface waters of the open oceans is an elusive process, and an unequivocal demonstration of it would simplify modelling of the marine iodine system. In the open ocean, the upward advection of iodate complicates any mathematical treatment of the problem. In this context, the high concentration (0.1 μM) of iodate in the Black Sea surface waters suggested that this Sea might be a place where oxidation might be demonstrated. Hydrologically, the surface waters of the Black Sea appear to be downstream of the deeper waters and, given the latter's anoxicity, the surface waters seemed likely to gain most of their iodine as iodide by upward advection. To test this further, prior to experimentation, an iodine budget for the near-surface waters, based upon the latest hydrological model of the Sea was prepared; this predicts a minimum oxidation flux of 3.89×10−4 mol I m−2 a−1. The chemistry of this oxidation is discussed in the light of existing knowledge of the sulfide system. It is argued that as the redox potential of the IO3/I and I2/I couples at pHs typical of the Black Sea (7.75) are much higher than that of the sulfate–sulfide couple, iodide is probably oxidized in the near-surface domain. This contrasts with sulfide oxidation in the suboxic zone. The possible role of nitrifying bacteria in the oxidation is discussed.  相似文献   

13.
Cold-seep environments and their associated symbiont-bearing megafaunal communities create islands of primary production for macro- and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area (730 m; 64°N), and the active, methane-venting Håkon Mosby Mud Volcano (HMMV) west of the Barents Sea (1280 m; 72°N). Based on sediment geochemistry and associated epifauna, three different habitat types were distinguished across the two regions: (1) reduced sediment with suboxic conditions, sometimes covered by bacterial mats, (2) sediment colonised by chemosynthetic, siboglinid tubeworms, and (3) sediment outside the influence of seepage and without a large chemosynthetic fauna. Meiofaunal communities varied strongly in terms of generic diversity and dominance among the different habitat types. Control sites and Siboglinidae polychaete fields both supported high nematode genus richness similar to normal deep-sea sediments, whereas the reduced sediments yielded a genus-poor nematode community dominated by one or two successful species. Meiofaunal densities in the different habitats were negatively correlated with macrobenthic densities. An extremely dense (>11,000 ind. 10 cm–2), mono-specific nematode population appeared to be restricted to the bacterial mats at HMMV. It consisted of a new cryptic species of the Halomonhystera disjuncta complex, which has been described from intertidal habitats in the North Sea. The reduced seep sediments at Nyegga did not yield H. disjuncta but were dominated by Terschellingia longicaudata, another cosmopolitan nematode species known to be abundant in organic-rich, oxygen-poor, shallow-water environments. These observations point to a past or recent connection between margins and shallow-water habitats.  相似文献   

14.
A study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds.The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4±0.6, 3.6±0.5 mmol m−2 d−1 at 1300 and 3100 m depth, respectively, and between 1.9±0.3 and 2.4±0.2 mmol m−2 d−1 at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8±1.1, 2.3±0.8, 0.8±0.3 and 1.2±0.1 mmol m−2 d−1, respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel–levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5–8 times larger than the vertical flux recorded in traps.Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the large sedimentation rate (19 mm y−1) found on this site. The Lobe region could receive as high as 19 mol C m−2 y−1, 1/3 being mineralized and 2/3 being buried and could constitute the largest depocenter of organic carbon in the South Atlantic.  相似文献   

15.
潮沟系统水沙输运研究——以长江口崇明东滩为例   总被引:1,自引:1,他引:0  
本研究以崇明东滩2015年4月实测潮间带水沙数据为基础,分析了潮沟、盐沼及光滩的水沙特征,重点研究了潮沟系统及邻近潮滩潮周期内悬沙通量情况。结果表明:(1)潮沟表层沉积物比潮滩细,二者平均中值粒径分别为21.7 μm和33.0 μm,悬沙粒径由海向陆逐渐变小;(2)大、小潮沟潮周期内潮流均以往复流为主,垂向平均流速分别为15.4 cm/s和34.6 cm/s;盐沼界和光滩则以旋转流为主,平均流速分别为11.3 cm/s和28.9 cm/s;(3)潮沟中的高悬沙浓度出现在涨潮初期,最大可达7.5 kg/m3,而潮滩高悬沙浓度则出现在潮落潮中期和高水位时刻;大、小潮沟和盐沼界站涨潮阶段平均悬沙浓度大于落潮阶段,光滩站则相反。潮沟悬沙主要来自邻近水域,而潮滩悬沙则与滩面表层沉积物密切相关;(4)潮沟在潮周期内净输沙方向均指向滩地,大潮沟潮周期单宽净输沙量可达4.0 t/m;盐沼界处垂直岸线和沿岸输沙强度相近,净输沙由海向陆,潮周期离岸输沙强度为1.0 t/m;光滩沿岸输沙强度远大于垂直岸线输沙,光滩净输沙由陆向海。研究揭示了潮间带潮沟系统的强供沙能力以及研究区域光滩冲蚀,盐沼植被带淤积的动力地貌过程。  相似文献   

16.
17.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

18.
Seven years (2001–2008) of dissolved organic carbon (DOC) vertical profiles were examined in order to assess the main processes determining DOC concentration and distribution in the meso- and bathypelagic layers of the Mediterranean Sea. As expected, DOC showed high and highly variable concentrations in the surface layer of 57–68 μM (average values between 0 and 100 m), with a decrease to 44–53 μM between 200 and 500 m. Deep DOC distribution was strongly affected by deep-water formation, with a significant increase to values of 76 μM in recently ventilated deep waters, and low concentrations, comparable to those observed in the open oceanic waters (34–45 μM), where the oldest, deep waters occurred. In winter 2004/2005 a deep-water formation event was observed and the consequent DOC export at depth was estimated to range between 0.76–3.02 Tg C month–1. In the intermediate layer, the main path of the Levantine Intermediate Water (LIW) was followed in order to estimate the DOC consumption rate in its core. Multiple regression between DOC, apparent oxygen utilization (AOU), and salinity indicated that 38% of the oxygen consumption was related to DOC mineralization when the effect of mixing was removed. In deep waters of the southern Adriatic Sea a DOC decrease of 6 μM, together with an AOU increase of 9 μM, was observed between the end of January 2008 and the end of June 2008 (5 months). These data indicate a rate of microbial utilization of DOC of about 1.2 μM C month−1, with 92% of the oxygen consumption due to DOC mineralization. These values are surprisingly high for the deep sea and represent a peculiarity of the Mediterranean Sea.  相似文献   

19.
Studies in epipelagic waters report higher heterotrophic microbial biomass in the productive high latitudes than in the oligotrophic low latitudes; however, biogeographical data are scarce in the deep ocean. To examine the hypothesis that the observed latitudinal differences in heterotrophic microbial biomass in the epipelagic zone also occur at depth, abundance and biomass of heterotrophic prokaryotes, nanoflagellates (HNF), and ciliates were determined at depths of 5–5000 m in the central Pacific between August and September of 2005. Heterotrophic microbial biomass increased from the tropical to the subarctic region over the full water column, with latitudinal differences in prokaryotic biomass increasing from 2.3-fold in the epipelagic zone to 4.4-fold in the bathypelagic zone. However, the latitudinal difference in HNF and ciliate biomass decreased with depth. In the mesopelagic zone, the vertical attenuation rate of prokaryotic abundance, which was calculated as the linear regression slope of log-log plot of abundance versus depth, ranged from –0.55 to –1.26 and was more pronounced (steeper slope) in the lower latitudes. In contrast, the vertical attenuation rate of HNF in the mesopelagic zone (–1.06 to –1.27) did not differ with latitude. In the subarctic, the attenuation rate of HNF was 1.7 times steeper than for prokaryotes. These results suggest the accumulation of prokaryotes in the deep subarctic Pacific, possibly due to low grazing pressure. Although the vertical attenuation rate of ciliates was steepest in the bathypelagic zone, HNF abundance did not further decrease at depths below 1000 m, except for at 2000 m where HNF was lowest across the study area. Ciliate abundance ranged 0.3–0.8 cells l–1 at 4000 m, and were below the detection limit (<0.1 cells l –1) at 5000 m. To our knowledge, this study presents the first data for ciliates below 2000 m.  相似文献   

20.
Distributions of Hg, Cd, Pb, Cu and Zn in seawater and sediment from Mljet National Park, Adriatic Sea are presented for the first time. Natural and anthropogenic factors play an important role in determining resultant trace metals' concentrations in the region. We place particular emphasis on the saline “lakes” of Malo Jezero and Veliko Jezero, which have restricted flows of seawater. In Malo Jezero lake, fresh karstic spring water generated by flooding, and weathering of dolomites are the main sources of naturally elevated Cd, Pb and Zn concentrations (20.7 ± 1.6, 289 ± 19, 1260 ± 0.08 ng L?1, respectively); anthropogenic input is negligible. In Veliko Jezero lake enhanced Cu and Zn contents originate from anthropogenic input (tourism and agriculture). Distributions of the Pb and Zn in the water columns of both lakes are influenced by natural aragonite precipitation and sedimentation. Exceptionally high total Hg concentrations of 24.2 and 33.7 ng L?1 in the water column of Malo Jezero, sampled during periods of high rainfall associated with strong eastern winds, suggest an airborne input. Total Hg concentrations in waters of both lakes are elevated because of inefficient mixing. Two different metal distribution patterns exist in the sediment columns. First, Hg, Pb, Cu and Zn show elevated concentrations in recent sediments due to anthropogenic input. Second, Cd content increases with depth due to reprecipitation via a downward redox boundary shift.Described natural processes, as well as anthropogenic influence, enhance levels of trace metals. Careful study followed by suitable interpretation based on geochemical data were necessary to distinguish natural from anthropogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号