首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Meiofauna as descriptor of tourism-induced changes at sandy beaches   总被引:9,自引:0,他引:9  
Tourism has long been considered as a 'clean industry' with almost no negative effects on the environment. This study demonstrated, in two different coastal systems (Mediterranean and Baltic), that tourism related activities are particularly affecting the sandy beach meio- and nematofauna in the upper beach zone, the specific ecotone in which many meiofauna species from both the marine and the terrestrial environment congregate. Tourist upper beaches are characterized by a lower % total organic matter (%TOM), lower densities, lower diversities (absence of Insecta, Harpacticoida, Oligochaeta, terrestrial nematodes and marine Ironidae nematodes) and higher community stress compared to nearby non-tourist locations. The %TOM was found to be the single most important factor for the observed differences in meiofauna assemblage structure at tourist versus non-tourist beaches in both the Mediterranean and the Baltic region. The free-living nematode assemblages from tourist upper zones depart significantly from expectations based on random selections from the regional nematode species pool. Furthermore upper zone assemblages are characterised by a low species diversity consisting of taxonomically closely related nematode species with r-strategist features. Generally, faunal differences between tourist and non-tourist beaches are decreasing towards the lower beach zones.  相似文献   

2.
It is known that the fauna of the exposed sandy beaches are primarily controlled by physical variables; but how these variables operate along and across the beach still remains fairly under discussion. In our study, we sampled a range of exposed sandy beaches along the Northwest coast of Spain to determine the relationship between the principal physical variables of the beaches (including beach morphodynamic state), and the macrofaunal community. The fauna of these beaches comprise truly marine species along the intertidal zone as well as semi-terrestrial species in the upper and supratidal environments. These two groups respond in a different manner to the physical environment. The first group is directly controlled by the morphodynamic state of the beach, and variations in the physical environment; the second group is not clearly affected by these physical conditions. In this case, other variables such as food availability and the human uses of the upper limits of the beach seem to be more relevant in explaining the patterns observed in the macrofaunal community.  相似文献   

3.
This study describes the distribution patterns of interstitial polychaetes along morphodynamic gradients on six exposed sandy beaches in Santa Catarina and Paraná (South Brazil). Three random transects were sampled at two points on each beach, one at the swash and another at the surf zone, in winter and summer conditions. Six sediment replicates were collected at each sampling point using a corer of 4.6 cm internal diameter that removed 10 cm into the sediment. Abundance and composition of interstitial polychaete were correlated to wave height, slope, grain size, CaCO3, chlorophyll a , omega indexes, temperature and relative tide range using a canonical correspondence analysis (CCA). A factorial ANOVA showed that taxa richness, mean density and Shannon's diversity were significantly higher at the reflective beaches, but average values differ significantly between transects and these differences change according to the beach zones on both sampling dates. PERMANOVA showed that polychaete associations differ among transects according to the beach zones. The composition of interstitial polychaete associations was significantly correlated to beach morphodynamics and features (P < 0.01). Polychaete associations of reflective beaches were more diverse than in other morphodynamic states. Intermediate beaches may also sustain diverse associations due to temporal variability of the morphodynamic patterns. Beaches presenting extreme dissipative morphodynamics and compacted sediments appear to be unfavourable for the occurrence of interstitial polychaetes.  相似文献   

4.
The species composition, densities, biomass and zonation patterns of the macrobenthos of sandy beaches are greatly influenced by the morphodynamics and morphology of the beaches. Macrobenthic zonation patterns along a small-scale morphodynamic gradient, comprising eight Belgian beach sites, were investigated. By taking into account the dimensionless fall velocity (Ω) and the relative tidal range, the beach sites were ordered along the gradient from the ultra-dissipative beach type (UD) to the low tide bar/rip beach type (LTBR). The resulting beach state index varied between 1.8 and 4.2 and the beach profiles were related with the beaches' morphodynamic state.In total 35 macrobenthic species, mainly polychaetes and crustaceans, were encountered, varying between 19 and 23 species per beach site. The species composition was quite similar among beach sites, with Scolelepis squamata being abundant at all eight sites. Furthermore, the macrobenthic distribution patterns were mainly related to elevation at all beach sites. Some remarkable difference in metrics, largely related to the beach morphodynamics and the consequent hydrodynamics, were found. At the hydrodynamically benign and consequently macrobenthos-rich UD beaches, the highest macrobenthic densities and biomass occurred on the upper beach, while at the hydrodynamically harsh and thus macrobenthos-poor LTBR beaches, the maximum densities and biomass occurred lower on the beach. Species, typically occurring on the upper UD beaches, such as Eurydice pulchra, S. squamata, and Bathyporeia sarsi, were restricted to the sub-optimal middle and lower beach zone at LTBR beaches. Only Bathyporeia pilosa was found on the upper beach of both UD and LTBR beaches. The more robust polychaete Ophelia rathkei and the interstitial polychaete Hesionides arenaria were exclusively found in the hydrodynamically harsh conditions of the middle LTBR beach zone.  相似文献   

5.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

6.
This study describes the macrofauna of the three beaches situated in central Gulf of Gabès (Tunisia): Ouderef, Gabès and Zarrat. The Gulf of Gabès has the largest tides in the Mediterranean and the beaches showed a wide intertidal zone. The beaches were sampled once during the spring low tides of June 2005. A transect was extended at each beach, from above the drift line to below the swash line at five sampled levels; at each level six 0.05 m2 replicates were taken to a depth of 30 cm and sieved through a 1-mm mesh, and the organisms collected and preserved. The three beaches showed a different physical environment. Sediment type was medium sand at the steeper Ouderef beach, fine sands at Gàbes beach, and very fine sands at the flatter Zarrat beach. The total number of species collected was 31: 12 crustaceans, 10 polychaetes, four molluscs and five insects. The supralittoral and mediolittoral zones were very different. The supralittoral zone was dominated by Talitrus saltator and insects. The most abundant mediolittoral species were the amphipod crustacean Bathyporeia guilliamsoniana at Ouderef beach (23069 ind.m−1), the surf clam Donax trunculus at Gabès beach (60711 ind.m−1) and the spionid polychaete Scolelepis mesnili at Zarrat beach (18345.6 ind.m−1).  相似文献   

7.
Lately, across‐shore zonation has been found to be more important in structuring the nematode community of a tropical macrotidal sandy beach than microhabitat heterogeneity. To evaluate whether this zonation pattern applies to a temperate beach, a macrotidal ridge‐and‐runnels sandy beach in the North Sea was studied. We investigated whether a similar zonation occurs in sandbar and runnel microhabitats, and whether the runnels harbour a different community from the subtidal. Our results indicate that nematode communities from runnel and sandbar habitats are significantly different. In addition, horizontal zonation patterns for nematode communities differ between both habitats. Nematode assemblages from sandbars are divided to lower, middle and upper beach while upper and middle runnels cluster together. The subtidal and upper runnels showed dissimilar nematode assemblages, although runnels showed the same dominant species (Daptonema normandicum), which increases its abundance towards the upper runnels. This study illustrates the importance of microhabitat heterogeneity, which resulted in different zonation patterns across the sandy beach examined. The divergent zonation between sandbars and runnels in the macrotidal temperate sandy beach, compared with the pattern observed for a subtropical sandy beach with similar morphodynamics, indicates that generalizations about nematode distribution patterns should be made with caution.  相似文献   

8.
Abstract. Eight sandy beaches were seasonally sampled along the coast of Chile, from ca. 21 to 42° S (about 3000 km) to study the relationship between community structure of the intertidal macroinfauna and beach characteristics. Sediment samples (0.1 m2, 30 cm deep) were collected (July – September 1998 and December 1998 – January 1999) with plastic cylinders at 15 equally spaced levels along three replicated transects extending from above the drift line to the swash zone. The sediment was sieved through a 1 mm mesh and the organisms collected stored in 5 % formalin. To define beach types, Dean's parameter (Ω) was calculated from wave heights and periods, and fall velocity of sand particles from the swash zone. Crustaceans (mainly peracarids) were the most diverse group with 14 species, followed by polychaetes with 5 species. The talitrid amphipod Orchestoidea tuberculata , the cirolanid isopods Excirolana braziliensis and E. hirsuticauda and the anomuran decapod Emerita analoga were the most widely distributed and common species. Regression analyses between species richness, abundance and biomass of the whole macroinfauna versus sediment characteristics, beach face slopes and morphodynamic beach states showed no significant relationships. Thus, macroinfaunal community characteristics did not increase linearly from lower intermediate to higher intermediate or dissipative beach states as had been found before in Chile or in other coasts. A comparative analysis with data from sandy beaches of other world regions showed that the number of species inhabiting Chilean sandy beaches was generally lower, whereas total population abundances were generally higher compared with values reported elsewhere.  相似文献   

9.
Many macrofaunal species inhabiting exposed sandy beaches are dependent on the swash for their nutrition and migration and are highly adapted to the harsh physical conditions of the swash. The most important physical factors that determine the distribution and behaviour of swash related fauna, next to the swash itself, are sediment grain size and beach slope. Crucial swash parameters are swash period and swash velocity. Studying the influence of these factors on the animals in the field is often very difficult and it is almost impossible to identify which factor causes what effect. Crucial knowledge about the direct role of the swash itself is lacking. Therefore, a device that generates swash waves on an artificial beach under laboratory conditions was designed: the swash rig. In the swash rig, full and independent control on sediment grain size, beach slope, swash velocity and swash period is present. This will allow us to do a variety of experiments on the influence of each of these factors, independently or combined, on swash fauna. In one such experiment, Olivella semistriata – a dominant surfing gastropod on Ecuadorian sandy beaches – was placed in the swash rig during rising and falling tide and subjected – under constant conditions – to an equal wave regime. During falling tide, and in absence of any tidal cue, almost all specimens moved downshore, as they would in the field; hardly any specimens moved upshore. During upcoming tide, however, there was noticeable upward migration in the swash rig, and half of the runs showed a net upward migration. Contrary to the common understanding that the behaviour of sandy beach molluscs is entirely environmentally driven, this experiment hints at the presence of an endogenous circatidal clock, which is used to direct the tidal migration of the species.  相似文献   

10.
《Coastal Engineering》2005,52(6):497-511
A weakly non-linear Boussinesq model with a slot-type shoreline boundary is used to simulate swash oscillations on beaches. Numerical simulations of swash were compared with laboratory measurements and in general good agreement found (less than 15% root-mean-square error of surface elevation except in regular waves). A series of numerical experiments on shoreline movement were then performed for a range of beach slopes and incident wave conditions. The resulting swash characteristics are then discussed in terms of their physical nature and spectral properties. On steep slopes, both individual bores and infragravity waves are equally significant in driving the swash while infragravity waves alone drive them on mild slopes. Swash excursions on any given slope are found to be highest when individual bores from a partially saturated surf zone ride on top of low-frequency waves. This is confirmed by the relationship found between swash excursion and wave groupiness in the surf zone. Swash excursions increase with increasing incident wave energy, even in fully saturated surf zones. However, a poor correlation is found between swash excursion and the surf similarity parameter due to the involvement of infragravity wave energy in the swash.  相似文献   

11.
Abstract. To evaluate the effects of beach morphodynamics upon the abundance, tidal movement, population structure and burrowing rate of the crab Emerita analoga (Stimpson) (Anomura, Hippidae) we sampled two beaches in south central Chile (ca. 42° S), Mar Brava and Ahui with dissipative and reflective characteristics, res­pectively. The swash zone at the dissipative beach was 5 – 6 times wider than that of the reflective beach. A at the dissipative beach, upwash speeds were higher and the number of effluent line crossings were lower by more than an order of magnitude. To examine the tidal movement of E. analoga, we collected crabs from 5 to 6 tidal levels of each beach every 2 h across 12 h of the tidal cycle. The intertidal distribution of crabs differed between beaches; i. e., at the dissipative beach they were primarily located at the swash zone, while at the reflective beach they were mostly located at the low tide level and shallow subtidal. The change in position of crabs was pronounced across the tidal cycle at the dissipative beach (Mar Brava), with most of the animals remaining in the active swash zone. Body size data were used to construct size frequency distributions for each population. Crabs from the dissipative beach reached larger sizes than those at the reflective beach. Sediments were coarser at the latter versus the former beach. Crabs burrowed at similar rates in the sand from both beaches, a result which supports the idea that E. analoga is a “sediment generalist” capable of burrowing successfully in a wide range of sediment types. This characteristic is likely a key to the broad success of this species on the full range of beach morphodynamic types along the coasts of South and North America.  相似文献   

12.
Hurricane- or storm-generated swell waves may cause erosion and deposition along coasts which are situated thousands of kilometers outside the generating wind field. Marked beach erosion, caused by such swell waves, was observed along the micro-tidal west coast of Aruba. During the process of erosion a swash bar was formed, which moved up-beach during the waxing part of the swell event. The swash bar welded to the beach during the waning part of the event. Rapid sedimentation occurred on the upper beach. Finally, recovery of the beach was observed. The formation of a swash bar was attributed to an erosive, dissipative interval of a normally accretionary reflective beach. The sedimentary structures, although generally in line with observations on other beaches, show several peculiar characteristics: (1) the great thickness of the laminae in these calcareous sands; (2) the succession of low-angle sigmoidal and tangential sets in the swash bar; (3) the relatively steep erosional lower set boundaries and the wedge-shaped lamination in the successive stages of beach recovery; and (4) the several types of deformation structures.  相似文献   

13.
Species richness is a measure that is fundamental to many studies in ecology, and it is particularly important on sandy beaches, where it underlies patterns described by the broadly accepted swash exclusion hypothesis. However, its estimation in practice is problematic. This has led ecologists in other fields to adopt extrapolative estimators of species richness, which project the total number of species present in a habitat by adjusting upward the number of species observed by an amount related to the number of rare species encountered in the samples. In so doing, the species richness can be estimated, with confidence intervals, at any level of sampling effort. Despite the availability and advantages of these methods, beach ecologists have continued to use the observed species richness as a point estimate of biodiversity for beaches. Here, we employ a Monte Carlo resampling approach over a range of routine transect designs used to sample sandy beaches, and evaluate the performance of seven non-parametric extrapolative estimators for species richness relative to that of the more conventionally used observed species richness. We find that the first-order Jackknife estimator (Jack 1) is the least biased, most accurate and most consistent across sites. Employing this estimator would allow accurate estimation of species richness on short (tens of metres) stretches of beach without exceeding the acceptable levels of sampling effort (4–5 m2). Spreading this effort evenly over three across-shore transects, each with a minimum of 13 equally spaced levels seems appropriately efficient. Although a greater number of research studies is required to ascertain the generality of these results beyond the beaches we sampled, we tentatively recommend the application of our results in biodiversity surveys on sandy beaches.  相似文献   

14.
Use of coastal armoring is expected to escalate in response to the combination of expanding human populations, beach erosion, and sea level rise along the coasts. To provide a conceptual framework, we developed hypotheses concerning the ecological effects of beach habitat loss associated with coastal armoring. As beaches narrow in response to armoring, dry upper intertidal zones should be lost disproportionately, reducing the habitat types available and the diversity and abundance of macroinvertebrates. Predators, such as shorebirds, could respond to a combination of (i) habitat loss; (ii) decreased accessibility at high tides; and (iii) reduced prey availability on armored beaches. To examine those predictions, zone widths and the distribution and abundance of macroinvertebrates and birds were compared on paired armored and unarmored segments of narrow bluff-backed beaches in southern California. Our results supported the predictions and revealed some unexpected effects of armoring on birds. Dry upper beach zones were lacking and mid-beach zones were narrower (>2 times) year-round on armored segments compared to adjacent unarmored segments. The abundance, biomass and size of upper intertidal macroinvertebrates were also significantly lower on armored segments. Shorebirds, most of which were foraging, responded predictably with significantly lower species richness (two times) and abundance (>3 times) on armored segments. Gulls and other birds (including seabirds), which use beaches primarily for roosting, were also significantly lower in abundance (>4 times and >7 times respectively) on armored segments, an important unexpected result. Given the accelerating pressures on sandy beaches from coastal development, erosion and rising sea levels, our results indicate that further investigation of ecological responses to coastal armoring is needed for the management and conservation of these ecosystems.  相似文献   

15.
The Interstitial Environment of Sandy Beaches   总被引:1,自引:0,他引:1  
Anton  McLachlan Ian  Turner 《Marine Ecology》1994,15(3-4):177-212
Abstract. The interstitial system of sandy beaches is lacunar and has its dimensions defined by the sand granulometry. It can be described by features such as pore size, porosity, permeability, and water content. The most important process occurring in this system, water filtration, is driven by inputs of freshwater from groundwater discharge, and inputs of seawater by tides, wave run-up, and subtidal wave pumping. Reflective beaches have seawater input effected mainly by waves; they filter large water volumes with short residence times. Dissipative beaches display the opposite patterns, slowly filtering small volumes input by tides. Flow patterns and their effects on interstitial climate are described. The water table of the beach moves in response to groundwater discharge, tides, and waves and influences erosion/accretion processes on the beach face: a high water table promotes erosion. A series of moisture zones can be recognised from the dry surface sand at upper tide levels, to permanently saturated sand below the low tide water table, namely: a stratum of dry sand, a stratum of retention, a stratum of resurgence, and stratum of saturation. Interstitial chemistry is briefly described in terms of salinity changes, organic loads, oxygen content, and nutrient cycling. It is concluded that the interstitial environment of sandy beaches spans a continuum between physically and chemically controlled extremes: the former condition occurs on coarse sand reflective beaches, which experience low organic inputs and high filtration rates of large water volumes — resulting in powerful hydrodynamic forces; the latter occurs on dissipative beaches of fine sand, which are subject to high organic inputs and low filtration volumes — resulting in stagnation and steep vertical chemical gradients. Many intermediate situations occur and these are more favourable to interstitial life than either of the extremes.  相似文献   

16.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

17.
On the basis of various lines of evidence, mostly coming from exposed sandy beaches in Southern Africa, it is postulated that under certain conditions high energy sandy beaches and their adjacent surf zones may function as viable ecosystems. Where surf zones are reasonably broad and shallow, cellular circulation patterns predominate and these tend to retain nutrients generated by the macrofauna and interstitial fauna of the beach. These nutrients may then cause blooms of surf zone phytoplankton which in turn serve as food for macrofauna filter feeders. With the perimeter of the circulation cells of the surf zone forming its marine boundary, the beach and surf zone may together be considered an ecosystem with surf phytoplankton the primary producers, beach macrofauna the consumers and interstitial fauna the decomposers.  相似文献   

18.
The distinctiveness of macrofaunal assemblages on different sandy beaches in the Maltese Islands was previously suggested by different single-season studies. A multi-seasonal sampling programme using pitfall trapping was implemented on four Maltese beaches to test the occurrence of this phenomenon. A total of 29,302 individuals belonging to 191 species were collected over a 2-year period, during which the beaches were sampled once per calendar season. A total of 77 species were recorded from single Maltese beaches only, of which nine were psammophiles. Non-metric multidimensional scaling analyses of pitfall trap species-abundance data resulted in a weak separation pattern, with samples grouping mainly in terms of beach and island rather than in terms of season or year of sampling, No physical variable could conclusively explain these patterns. It is concluded that although operating on Maltese beaches, macrofaunal assemblage distinctiveness is weaker than originally thought and can be attributed to the presence/absence or abundance of just a few psammophilic species. It is postulated that this phenomenon may be related to the 'pocket beach' nature of Maltese beaches, where headlands on either side of the beach to a large extent prevent the occurrence of longshore currents, resulting in semi-isolation of the populations of psammophilic species. A large number of single-beach records reported in this study highlight the high degree of beta diversity and spatial heterogeneity of Maltese beaches, and the conservation importance of the individual beach macrofaunal assemblages.  相似文献   

19.
《Marine Geology》2004,203(1-2):109-118
Spatial variations in sediment load in the swash uprush and textural properties of sediment in transport were evaluated to investigate the mechanisms responsible for sediment transport during wave uprush. Four streamer traps were deployed at 2.0-m intervals across the swash zone of a sheltered, microtidal sandy beach at Port Beach, Western Australia, over a 4-day period. During these trapping experiments, offshore significant wave heights were 0.3–0.5 m and wave periods were about 10 s. The average width of the uprush zone was 6.9 m and the average uprush duration was 5.9 s. Cross-shore distributions of sediment load for 70 uprush events reveal a maximum in sediment load landward of the base of the swash (at about 20% of swash width) during single events and a maximum closer to mid-swash (at about 40% of swash width) during multiple events characterized by swash interactions. Settling velocity distributions of trap samples during individual uprush events are similar to distributions found on the beach surface, with the lowest settling velocities (finest sediments) near the base of the swash zone and maximum settling velocities (coarsest sediments) around the mid-swash position. It was found that sediment transport during wave uprush occurs through two distinct mechanisms: (1) sediment entrainment during bore collapse seaward of the base of the swash zone and subsequent advection of this bore-entrained sediment up the beach by wave uprush; and (2) in situ sediment entrainment and transport induced by local shear stresses during wave uprush. Both mechanisms are considered important, but the first mechanism is considered most significant during the early stages of wave uprush when sediment is transported mainly in suspension, while the second mechanism is likely to dominate the mid- to later stages of wave uprush when sediment is transported mainly by sheet flow. The relative importance of the two mechanisms will vary between different beaches with the morphodynamic state of the beach (reflective versus dissipative) expected to play a major role.  相似文献   

20.
We analysed the consistence of vertical patterns of distribution (i.e. zonation) for macrofauna at different spatial scales on four intermediate exposed beaches in the North of Portugal. We tested the hypothesis that biological zonation on exposed sandy beaches would vary at the studied spatial scales. For this aim, abundance, diversity and structure of macrobenthic assemblages were examined at the scales of transect and beach. Moreover, the main environmental factors that could potentially drive zonation patterns were investigated. Univariate and multivariate analyses revealed that the number of biological zones ranged from two to three depending on the beach and from indistinct zonation to three zones at the scale of transect. Therefore, results support our working hypothesis because zonation patterns were not consistent at the studied spatial scales. The median particle size, sorting coefficient and water content were significantly correlated with zonation patterns of macrobenthic assemblages. However, a high degree of correlation was not reached when the total structure of the assemblage was considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号