首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold springs upwelling through large serpentinite mud volcanoes in the outer half of the Mariana forearc provide a unique window into processes of devolatilization of the subducting Pacific Plate. We have sampled upwelling pore waters with lower chlorinity than seawater from six sites on five serpentinite mud volcanoes, by conventional gravity and piston coring, by push coring from the ROV Jason, by drilling on ODP Legs 125 and 195, and by manned submersible. The sites range from 13°47′N to 19°33′N and 52 to 90 km from the Mariana trench axis, corresponding to approximate depths to the top of the downgoing plate of 16 to 29 km. The composition of the springs varies systematically over this distance: nearer the trench the upwelling waters have much higher Ca and Sr than seawater and much lower carbonate alkalinity, sulfate, Na/Cl, K, Rb, and B. Farther from the trench the waters show the opposite trends relative to seawater. Chlorinity is consistently lower than in seawater and shows large variations that are not systematic with distance from the trench. Cs is consistently higher than in seawater and increases with distance from the trench. All of the waters have high pH and are heavily depleted in Mg, Si, Li, F, and 87Sr/86Sr relative to seawater. They tend to be enriched in O18/O16. Except for ODP drilling, none of the cores was long enough to produce an asymptotic compositional trend with depth. We have inferred the end-member compositions of the upwelling waters by extrapolation against Mg. At two sites we were able to compare data from gravity cores with data from drill cores or push cores collected at springs to estimate the effects of reactions that occur at shallow depth below the seafloor, on mixing of the upwelling waters with seawater. These effects are different for sites high in dissolved Ca, nearer the trench, vs. those high in alkalinity, farther from the trench. Common to both are large losses from solution of 1) Ca, as CaCO3 and in exchange for Na; 2) Mg, in exchange for Na or Ca and as brucite; 3) sulfate, probably reduced by microbes or possibly precipitated as gypsum; 4) Sr, Ba, Si, and F. Na is consistently leached from the solids into solution, whereas K and O18/O16 are relatively unreactive.We infer that the upwelling waters are uniformly saturated with CaCO3 and that the excess H2O and the trends in Ca, Sr, alkalinity, and sulfate with distance from the trench result from introduction of H2O and dissolved carbonate and sulfate from an external source, the sediment and altered basalt at the top of the subducting plate. The concurrent trends in Na/Cl, B, Cs, and especially K and Rb indicate that these species originate from the top of the subducting plate in response to increasing temperature. These systematic variations across the outer forearc imply that the solutions ascend more or less vertically from the source region and do not travel long distances laterally along the décollement before ascending. Based on leaching of K, the 150°C isotherm is crossed approximately beneath Big Blue Seamount at a depth of ∼22 km below the seafloor, 70 km behind the trench. By this point it appears that carbonate dissolution has joined dehydration as a significant process at the top of the subducting plate.  相似文献   

2.
The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C27–C29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios (ranging from 0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio (10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C19–C22 and the n-fatty acids C20:0–C22:0 were depleted in 13C by 3‰ compared to n-alkanes C16–C18 and the n-fatty acids C14:0–C18:0, respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.  相似文献   

3.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

4.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

5.
The main structures of a subduction zone are as follows.

1. (1) On the outer wall: faults, formed either by reactivation of the structural grain of the oceanic plate, when the latter is slightly oblique to the trench, or by a new fault network parallel to the trench, or both. The width of the faulted zone is about 50 miles.

2. (2) On the inner wall: either an accretionary prism or an extensional fault network, or both; collapsed structures and slumps are often associated, sometimes creating confusion with the accretionary structures.

3. (3) The overall structure of the trench itself is determined by the shape of the edge of the continental crust or of the island arc. Its detailed structure, however, is related to the oceanic plate, namely when the structural grain of the latter is slightly oblique to the trench, which then takes an “en echelon” form. Collapsed units can fill up the trench which is, in that case, restricted to an irregular narrow depression; the tectonic framework of the trench can be buried under a sedimentary blanket when the sedimentation rate is high and the trench bottom is a large, flat area.

Two extreme types of active margins can be distinguished: convergent compressive margins, when the accretionary mechanism is strongly active; and convergent extensional margins where the accretionary mechanism is absent or only weakly active.

The status of a given margin between these two extreme types is related to the convergence rate of the plates, the dip of the subduction zone, the sedimentation activity and the presence of a continental obstacle, because oceanic seamounts and aseismic ridges are easily subducted.

Examples are taken from the Barbados, Middle America, Peru, Kuril, Japan, Nankai, Marianna, Manila, New Hebredes and Tonga trenches.  相似文献   


6.
This paper presents results obtained from numerical model experiments to show different patterns of mantle flow produced by lithospheric movement in subduction zones. Using finite element models, based on Maxwell rheology (relaxation time ∼ 1011S), we performed three types of experiments: Type 1, Type 2 and Type 3. In Type 1 experiments, the lithospheric slab subducts into the mantle by translational movement, maintaining a constant subduction angle. The experimental results show that the flow perturbations occur in the form of vortices in the mantle wedge, irrespective of subduction rate and angle. The mantle wedge vortex is coupled with another vortex below the subducting plate, which tends to be more conspicuous with decreasing subduction rate. Type 2 experiments take into account a flexural deformation of the plate, and reveal its effect on the flow patterns. The flexural motion induces a flow in the form of spiral pattern at the slab edge. Density-controlled lithospheric flexural motion produces a secondary flow convergence zone beneath the overriding plate. In many convergent zones the subducting lithospheric plate undergoes detachment, and moves down into the mantle freely. Type 3 experiments demonstrate flow perturbations resulting from such slab detachments. Using three-dimensional models we analyze lithospheric stresses in convergent zone, and map the belts of horizontal compression and tension as a function of subduction angle.  相似文献   

7.
Free conductive flows in the asthenosphere, layer C, and subduction zone are considered on the basis of experimental and theoretical simulation. The main forces acting on the oceanic lithospheric plate in the subduction zone are described. The horizontally directed forces arising due to free convection in the asthenosphere and transferring the oceanic lithospheric plate toward subduction zone have been estimated. These are friction force Fa and force of gravitational sliding F rd. Thermogravitational force F tg, which is created because the subducting lithospheric plate has a lower average temperature than the ambient mantle, is estimated. The force created owing to phase transitions in the subducted plate has been estimated as well. The tangential stress at the contact of the subducting plate with the continental lithosphere and underlying upper mantle has been determined. The horizontal force arising due to different lateral temperature gradients in the upper mantle on the left and on the right of the subducting plate has been estimated. The results of experimental modeling of the effect exerted upon subduction by counter free convective flows developing in the asthenosphere are considered. The experiments show that the position of the descending free convective flow and thus of the subduction zone depends on the ratio of the thermal power of astehnospheric countercurrents. The pressure arising near the 670 km boundary gives rise to spreading of the subducting plate over this boundary.  相似文献   

8.
The presented scenario of free convection flows in a subduction zone is based on experimental and theoretical simulation. The experimental simulation of free convection flows is carried out under various conditions of heat transfer that occurs between the oceanic and continental limbs of the subduction zone. The experiments show that to provide insights into subduction zones, it is necessary to estimate the horizontal forces acting on the left and right sides of the plunging plate, as well as the resulting horizontal force and its direction. The vector sum of horizontal and gravity forces of the subducting plate determines the slope angle of this plate at different depths. Heat transfer in the subducting plate has been considered. The y min coordinate of the temperature minimum in a plate and the value of minimum temperature have been estimated. The forces that arise due to phase transition and owing to the horizontal temperature gradient along the thickness of the descending lithosphere in the transitional mantle layer C are estimated as well. These forces are directed in opposite direction from the y min coordinate and induce spreading of the subducting lithosphere along the boundary between the upper and lower mantle. Theoretical simulation of the hydrodynamics and heat transfer in combination with experimental simulation of convection flows in a subduction zone indicates that a significant part of the upper mantle material of the plunging plate circulates in the oceanic limb of the subduction zone owing to spreading from the region of minimum temperature along a 670 km boundary.  相似文献   

9.
Sediment subduction versus accretion around the pacific   总被引:2,自引:0,他引:2  
Subducting oceanic plates are typically broken by normal faults as they bend downward into subduction zones, usually forming regular patterns of grabens. The faults strike parallel or subparallel to the trench axes and are most commonly 5–10 km in spacing and width. Rupture occurs initially near the outer topographic high and vertical displacement or graben depth increases as the plate descends, the 400 m or more at many trench axes. It is suggested that the grabens provide void spaces within the surface of the subducting plate, below the plane of subduction, into which the trench sediments are tectonically displaced and thus subducted. Around the Pacific, the only regions of apparent fore-arc sediment accretion are where the graben structures are missing or masked by thick sediment deposits. Even in these cases sediment subduction, by inclusion in subducting plate grabens or by other mechanisms, must be invoked to explain the relatively small fore-arc sediment volumes compared to calculated accretion volumes based on historical convergence. Where trench sediment volumes are small compared to the graben volumes the grabens may abrade the leading edge and underside of the overriding plate and subduct the eroded material. It is concluded that sediment subduction is dominant around the Circum-Pacific and that the bending-induced graben structures of the subducting plates are a major factor for sediment subduction and tectonic erosion.  相似文献   

10.
The shapes and orientations of Benioff zones beneath island arcs, interpreted as marking the location of subducted lithosphere, provide the best presently available constraints on the global convective flow pattern associated with plate motions. This global flow influences the dynamics of subduction. Subduction zone phenomena therefore provide powerful tests for models of mantle flow. We compute global flow models which, while simple, include those features which are best constrained, namely the observed plate velocities, applied as boundary conditions, and the density contrasts given by thermal models of the lithosphere and subducted slabs. Two viscosity structures are used; for one, flow is confined to the upper mantle, while for the other, flow extends throughout the mantle.Instantaneous flow velocity vectors match observed Benioff zone dips and shapes for the model which allows mantle-wide flow but not for the upper mantle model, which has a highly contorted flow pattern. The effect of trench migration on particle trajectories is calculated; it is not important if subduction velocities are greater than migration rates. Two-dimensional finite element models show that including a coherent high viscosity slab does not change these conclusions. A coherent high viscosity slab extending deep into the upper mantle would significantly slow subduction if flow were confined to the upper mantle. The maximum earthquake magnitude, Mw, for island arcs correlates well with the age of the subducted slab and pressure gradient between the trench and back-arc region for the whole mantle, but not the upper mantle, flow model. The correlations with orientations of Benioff zones and seismic coupling strongly suggest that the global return flow associated with plate motions extends below 700 km. For both models, regions of back-arc spreading have asthenospheric shear pulling the back-arc toward the trench; regions without back-arc spreading have the opposite sense of shear, suggesting global flow strongly influences back-arc spreading.  相似文献   

11.
The deformation of the oceanic lithosphere subducting at the junction of two trenches is studied by means of a three-dimensional finite-element analysis. Results show that the existence of a junction (i.e. a change in trend of the trench axis) yields a specific shape of the outer topographic rise. In a convex junction area—such as the Japan and Kuril trenches, the topographic bulge presents a “dome”, whereas in a concave junction area—such as the Java and Sumatra trenches, this bulge is less pronounced. These theoretical results are confirmed by the bathymetry seaward of the junctions of the Japan and Kuril trenches and of the Peru-Chile trench. Moreover, the existence of the abnormal topographic dome in front of a convex junction contributes to the creation of normal faults which help the subduction of seamounts or of other bathymetric features in such areas.  相似文献   

12.
ABSTRACT

Based on a two-segment plate flexural modelling, we investigated the effective elastic thickness of global subducting oceanic lithosphere. Our results show that for the plate age of 0 to 50 Ma, the seaward effective elastic thickness T e M values are located between 600 and 900°C isotherms, and do not track any isotherm, while the majority of the trenchward effective elastic thickness T e m values are located between 300 and 600°C isotherms. For the plate age older than 50 Ma, T e M values basically matches the 600°C isotherm with some fluctuations for the age older than 110 Ma, while T e m values mainly fall between 200 and 400°C isotherms. The reduction in effective elastic thickness (T e M-T e m) varies from 2.6 to 30.1 km, or 11–68% of seaward T e M. Thus, the absolute value of the decrease in the effective elastic thicknesses (T e M-T e m) increases with the plate age, while the percentage reduction in the effective elastic thickness (1-T e m/T e M) has no obvious relationship with the age, but more related to the curvature of bending plate. Almost all bending-related earthquakes occurred above the T e M line, but many normal-faulting earthquakes are deeper than the T e M-T e m line, implying that the plate may still retain some thickness of an elastic property core in the areas (depth) where earthquakes occur.  相似文献   

13.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   

14.
We constrain the multistage tectonic evolution of the Palaeoproterozoic UHT metamorphic(P=0.9–1.0 GPa,T>1000℃,t=2088–2031 Ma)Bakhuis Granulite Belt(BGB)in Surinam on the Guiana Shield,using large-to small-scale structures,Al-in-hornblende thermobarometry and published fluid inclusion and zircon geochronological data.The BGB forms a narrow,NE–SW striking belt between two formerly connected,~E–W oriented granite-greenstone belts,formed between converging Amazonian and West African continental masses prior to collision and Transamazonian orogeny.Inherited detrital zircon in BGB metasediments conforms agewise to Birimian zircon of West Africa and suggests derivation from the subsequently subducted African passive margin.Ultrahigh-temperature metamorphism may have followed slab break-off and asthenospheric heat advection.Peak metamorphic structures result from layer-parallel shearing and folding,reflecting initial transtensional exhumation of the subducted African margin after slab break-off.A second HT event involves intrusion,at ca.0.49 GPa,of charnockites and metagabbros at 1993–1984 Ma and a layered anorthosite at 1980 Ma,after the BGB had already cooled to<400℃.The event is related to northward subduction under the greenstone belts,along a new active margin to their south.A pronounced syntaxial bend in the new margin points northward towards the BGB and is likely the result of indentation by an anticlinorial flexural bulge of the subducting plate.Tearing of the subducting oceanic plate along this bulge explains why the charnockites are restricted to the BGB.The BGB subsequently experienced doming under an extensional detachment exposed in its southwestern border zone.Exhumation was focused in the BGB as a result of the flexural bulge in the subducting plate and localised heating of the overriding plate by charnockite magmatism.The present,straight NE–SW long-side boundaries of the BGB are superimposed mylonite zones,overprinted by pseudotachylites,previously dated at ca.1200 Ma and 950 Ma,respectively.The 1200 Ma mylonites reflect transpressional popping-up of the BGB,caused by EW-directed intraplate principal compressive stresses from Grenvillian collision preserved under the eastern Andes.Further exhumation of the BGB involved the 950 Ma pseudotachylite decorated faulting,and Phanerozoic faulting along reactivated Meso-and Neoproterozoic lineaments.  相似文献   

15.
W.P. Schellart  D.R. Stegman  J. Freeman   《Earth》2008,88(1-2):118-144
Since the advent of plate tectonics different global reference frames have been used to describe the motion of plates and trenches. The difference in plate motion and trench migration between different reference frames can be substantial (up to 4 cm/yr). This study presents an overview of trench migration velocities for all the mature and incipient subduction zones on Earth as calculated in eight different global reference frames. Calculations show that, irrespective of the reference frame: (1) trench retreat always dominates over trench advance, with 62–78% of the 244 trench segments retreating; (2) the mean and median trench velocity are always positive (retreating) and within the range 1.3–1.5 cm/yr and 0.9–1.3 cm/yr, respectively; (3) rapid trench retreat is only observed close to lateral slab edges (< 1500 km); and (4) trench retreat is always slow far from slab edges (> 2000 km). These calculations are predicted by geodynamic models with a varying slab width, in which plate motion, trench motion and mantle flow result from subduction of dense slabs, suggesting that trench motion is indeed primarily driven by slab buoyancy forces and that proximity to a lateral slab edge exerts a dominant control on the trench migration velocity. Despite these four general conclusions, significant differences in velocities between such reference frames remain. It is therefore important to determine which reference frame most likely describes the true absolute velocities to get an understanding of the forces driving plate tectonics and mantle convection. It is here proposed that, based on fluid dynamic considerations and predictions from geodynamic modelling, the best candidate is the one, which optimises the number of trench segments that retreat, minimizes the trench–perpendicular trench migration velocity (vT) in the centre of wide (> 4000 km) subduction zones, maximizes the number of retreating trench segments located within 2000 km of the closest lateral slab edge, minimizes the average of the absolute of the trench–perpendicular trench migration velocity (|vT|) for all subduction zones on Earth, and minimizes the global upper mantle toroidal volume flux (To) that results from trench migration and associated lateral slab migration (i.e. slab rollback or slab roll-forward). Calculations show that these conditions are best met in one particular Indo-Atlantic hotspot reference frame, where 75% of the subduction zones retreat, vT in the centre of wide subduction zones ranges between − 3.5 and 1.8 cm/yr, 83% of the trench segments located within 2000 km of the closest lateral slab edge retreat, the average of |vT| is 2.1 cm/yr, and To = 456 km3/yr (lower limit) and 539 km3/yr (upper limit). Inclusion of all the incipient subduction zones on Earth results in slightly greater fluxes of 465 km3/yr (lower limit) and 569 km3/yr (upper limit). It is also found that this reference frame is close to minimizing the total sub-lithospheric upper mantle volume flux (K) associated with motion of continental keels located below the major cratons. It is stressed, however, that K is an order of magnitude smaller than To, and thus of subordinate importance. In conclusion, the Indo-Atlantic hotspot reference frame appears preferable for calculating plate velocities and plate boundary velocities.  相似文献   

16.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

17.
Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and δ15NAir of −11.6‰ to +8.3‰, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-δ15N modeling for samples from Sites 801 and 1149 (n = 39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration.The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 8 × 105 g/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5.1 × 106 g/km N annually into that trench. This N input flux is twice as large as the annual N input of 2.5 × 106 g/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.  相似文献   

18.
Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13–14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin.The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.  相似文献   

19.
It has been inferred from the focal mechanism of earthquakes and their hypocenter distribution (Shiono, 1977) that the stress field in southwestern Japan indicates complicated features; a NW-SE compression at shallow depths along the Nankai trough, an E-W or ESE-WNW compression in the inland crust, an extension parallel to the leading edge of the Philippine Sea plate at subcrustal depths in the region from the southern Chubu to northwestern Shikoku, and a down-dip tension beneath the Kyushu island.In order to investigate possible sources of these complex features of the stress state, a three-dimensional finite element method is employed to model the configuration of the subducting Philippine Sea plate, taking into consideration the following three possible types of forces:
1. (1) A negative buoyancy due to the density contrast between the subducting plate and the surrounding mantle.
2. (2) A northwestward compressive force generated by the movement of the Philippine Sea plate.
3. (3) A westward compressive force due to the movement of the Pacific plate.
For various combinations of different magnitudes of these forces, and of different elastic moduli, the stresses at a number of selected sites are calculated, and their directions are compared with those inferred from the focal mechanism and other geophysical information.It is found that the observed extensional stresses parallel to the leading edge of the subducting Philippine Sea plate may be caused mainly by the negative buoyancy. The northwestward compressive force may not play an important role in generating the complex stress field in southwestern Japan. The observed E-W compressional stress field prevailing in the inland region appears to result mainly from the westward-moving Pacific plate. The present results suggest that if a thin low-velocity transitional layer exists just above the subducting Philippine Sea plate, it could give appreciable effects on the mechanism of low-angled thrust faulting off the Kii peninsula and the Shikoku island.The magnitude of the shear stress in the continental crust and in the subducting plate is estimated to be of the order of several hundred bars, although the calculated shear stresses are considerably affected by the configuration of the subducting plate and also by the applied forces.It is interesting that the stress distribution appears to have some relations to seismicity of subcrustal earthquakes, and to the rupture process of large thrust earthquakes along the plate boundary.  相似文献   

20.
Seabeam, seismic and submersible surveys took place during the Kaiko Project and revealed significant compressive deformation at the northeastern end of the Philippine Sea plate, related to the recent collision of the Izu-Ogasawara Arc against Central Japan. Intraoceanic thrusting at the base of the Zenisu Ridge, a linear topographic high running a few tens of kilometers south of the Nankai Trough, is supported by tectonic, magnetic and gravimetric data. We investigate the formation of the Zenisu Ridge in terms of compressive mechanical failure of a thin elastic-perfectly plastic plate, subducting at a trench and subject to a regional compressive axial force. The rheological envelope concept is used throughout the numerical calculations. Based on a detailed study of flexure of the present-day bending far from the deformation zone, we evaluate the bending forces involved: the bulge is 120 to 150 m high and the compressive stress all along the Nankai Trough is about −100 MPa. In the Zenisu Ridge area, an additional compressive stress is superimposed due to the nearby collision at Izu-Peninsula. We compute the vertical distribution of the deviatoric stress before failure and find that the deviatoric stress is maximum at a depth of 20–25 km in the trench area, and again at the surface 60 to 100 km seaward, in the vicinity of the bulge. The development of a thrust joining these two maxima through the entire thickness of the lithosphere is discussed. The model predicts that the formation of the Zenisu Ridge did not occur before 4 Ma and is caused by progressive tectonic uplift due to the redistribution of bending stresses as the ridge approaches the Nankai Trough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号