首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.  相似文献   

2.
Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies due to the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. An integrated modeling methodology has been developed for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada (USA), a proposed underground repository site for storing high-level radioactive waste. The approach integrates moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain’s highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations through analyzing flow patterns in the unsaturated zone. In particular, this model provides clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain’s flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.  相似文献   

3.
In this study, the hydrogeochemical program PHREEQC was used to determine the chemical speciation and mineral saturation indices (SIs) of groundwater in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada (USA). In turn, these data were used to interpret the origin and recharge mode of groundwater, to elucidate the mechanisms of flow and transport, and to determine potential sources of groundwater contamination. PHREEQC was run to determine aqueous dissolved species and minerals that would be in equilibrium with the study area’s groundwater. Selected major ions, associated SI, F and Ca/Na ion exchange were then examined using the multivariate statistical methods of principal component factor analysis and k-means cluster analysis. Analysis of dissolved ion concentrations, SIs, and Ca/Na ion exchange allows simultaneous consideration of arithmetic (raw concentrations) and logarithmic (SI, ion exchange) variables that describe the hydrochemical system and, therefore, can provide further insight into the system’s behavior. The analysis indicates that the dominant processes and reactions responsible for the hydrochemical evolution in the system are (1) evaporative concentration prior to infiltration, (2) carbonate equilibrium, (3) silicate weathering reactions, (4) limited mixing with saline water, (5) dissolution/precipitation of calcite, dolomite and fluorite, and (6) ion exchange. Principal component factor analysis and k-means cluster analysis of factor scores allow the reduction of dimensions describing the system and the identification of hydrogeochemical facies and the processes that defined and govern their evolution.Statistical analysis results indicate that the northern, west face and southern Yucca Mountain groundwater is fresh water with low concentrations of Ca2+, Mg2+, Cl, Ca2+/(Na+)2, and CaF2. The Fortymile Wash groundwater is dilute. The carbonate signature is shown in the Ash Meadows and Death Valley waters with high fluorite SI. Finally, the Crater Flat, Stripped Hills, and Skeleton Hills are dominated by Ca/Na ion exchange, Mg and Ca. The hydrochemical and statistical analyses showed three main groundwater signatures or hydrochemical processes indicating groundwater evolution, potential flowpaths, and recharge areas. The flowpaths are the trace of the Amargosa River, the trace of Fortymile Wash, and its convergence with the Amargosa River. This appears to represent not just a groundwater flow path, but traces of surface runoff infiltration as well.  相似文献   

4.
《Applied Geochemistry》2002,17(6):751-779
Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6–10 μg l−1) and 234U/238U activity ratios (commonly 1.5–6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7–8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced flow from 40 a of ground-water withdrawal. Elevated 234U/238U in a borehole south of Yucca Mountain is interpreted as evidence that natural downgradient flow is more likely to follow southerly paths in the structurally anisotropic Tertiary volcanic aquifer where it becomes diluted by regional flow in the Fortymile system.  相似文献   

5.
Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods   总被引:2,自引:2,他引:2  
Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. Electronic Publication  相似文献   

6.
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site.One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described.The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.  相似文献   

7.
A literature review of dripping in underground constructions in deep, unsaturated geologic media was performed as part of a phased study. The objective is to develop and test a formulation that can be used for studying unsaturated flow through rough multi-segmented fractures, with emphasis on predicting dripping initiation time. Geologic and hydrogeologic setting for the Yucca Mountain (YM) and its exploratory studies facility, which is the site where the model will be tested, are described.  相似文献   

8.
Phosphate mining in southeastern Idaho has historically resulted in the release of dissolved metals and inorganics to groundwater and surface water, primarily due to leachate from waste rock in backfilled pits and overburden storage piles. Selenium (Se) is of particular concern due to its high concentration in leachate and its limited attenuation downgradient of source zones under oxic conditions. Assessments of potential groundwater/surface water impacts from waste rock typically involve laboratory characterization using saturated and unsaturated flow columns packed with waste rock. In this study, we compare the results of saturated and unsaturated column tests with groundwater quality data from the Mountain Fuel, Champ, South and Central Rasmussen Ridge Area (SCRRA), Smoky Canyon, Ballard, Henry, and Enoch Valley Mines, to understand the release and attenuation of Se in different geochemical environments. Column studies and field results demonstrate that the ratio of aqueous Se to aqueous sulfate (Se:SO4 ratio) is a useful metric for understanding Se release and attenuation, where the extent of sulfate reduction is much less than Se reduction. Comparison of dissolved Se and sulfate results suggests that the net leachability of Se from unsaturated waste rock is variable. Overall, Se concentrations in groundwater directly beneath waste rock dumps is not as high as would be predicted from unsaturated columns. Lower Se:SO4 ratios are observed immediately beneath waste rock dumps and backfilled pits relative to areas receiving shallow waste rock runoff. It is hypothesized that Se released in the oxic upper portions of the waste rock is subsequently attenuated via reductive precipitation at depth in unsaturated, low-oxygen portions of the waste rock. This highlights an important mechanism by which Se may be naturally attenuated within waste rock piles prior to discharge to groundwater and surface water. These results have important implications for mining practices in the region. A better understanding of Se dynamics can help drive waste rock management during active mining and capping/water management options during post-mining reclamation.  相似文献   

9.
 Yucca Mountain, the proposed site for the high-level nuclear waste repository, is located just south of where the present water table begins a sharp rise in elevation. This large hydraulic gradient is a regional feature that extends for over 100 km. Yucca Mountain and its vicinity are underlain by faulted and fractured tuffs with hydraulic conductivities controlled by flow through the fractures. Close to and parallel with the region of large hydraulic gradient, and surrounding the core of the Timber Mountain Caldera, there is a 10- to 20-km-wide zone containing few faults and thus, most likely, few open fractures. Consequently, this zone should have a relatively low hydraulic conductivity, and this inference is supported by the available conductivity measurements in wells near the large hydraulic gradient. Also, slug injection tests indicate significantly higher pressures for fracture opening in wells located near the large hydraulic gradient compared to the opening pressures in wells further to the south, hence implying that lower extensional stresses prevail to the north with consequently fewer open fractures there. Analytical and numerical modeling shows that such a boundary between media of high and low conductivity can produce the observed, large hydraulic gradient, with the high conductivity medium having a lower elevation than the water table. Further, as fractures can close due to tectonic activity, the conductivity of the Yucca Mountain tuffs can be reduced to a value near that for the hydraulic barrier due to strain release by a moderate earthquake. Under these conditions, simulations show that the elevation of the steady-state water table could rise between 150 and 250 m at the repository site. This elevation rise is due to the projected shift in the location of the large hydraulic gradient to the south in response to a moderate earthquake, near magnitude 6, along one of the major normal faults adjacent to Yucca Mountain. As the proposed repository would only be 200–400 m above the present water table, this predicted rise in the water table indicates a potential hazard involving water intrusion. Received: 7 June 1996 / Accepted: 19 November 1996  相似文献   

10.
The unsaturated fractured volcanic deposits at Yucca Mountain in Nevada, USA, have been intensively investigated as a possible repository site for storing high-level radioactive waste. Field studies at the site have revealed that there exist large variabilities in hydrological parameters over the spatial domain of the mountain. Systematic analyses of hydrological parameters using a site-scale three-dimensional unsaturated zone (UZ) flow model have been undertaken. The main objective of the sensitivity analyses was to evaluate the effects of uncertainties in hydrologic parameters on modeled UZ flow and contaminant transport results. Sensitivity analyses were carried out relative to fracture and matrix permeability and capillary strength (van Genuchten α) through variation of these parameter values by one standard deviation from the base-case values. The parameter variation resulted in eight parameter sets. Modeling results for the eight UZ flow sensitivity cases have been compared with field observed data and simulation results from the base-case model. The effects of parameter uncertainties on the flow fields were evaluated through comparison of results for flow and transport. In general, this study shows that uncertainties in matrix parameters cause larger uncertainty in simulated moisture flux than corresponding uncertainties in fracture properties for unsaturated flow through heterogeneous fractured rock.  相似文献   

11.
12.
《Applied Geochemistry》1994,9(6):713-732
At the Nopal I uranium deposit, primary uraninite (nominally UO2+x) has altered almost completely to a suite of secondary uranyl minerals. The deposit is located in a Basin and Range horst composed of welded silicic tuff; uranium mineralization presently occurs in a chemically oxidizing and hydrologically unsaturated zone of the structural block. These characteristics are similar to those of the proposed U.S. high-level nuclear waste (HLW) repository at Yucca Mountain, Nevada. Petrographic analyses indicate that residual Nopal I uraninite is fine grained (5–10 μm) and has a low trace element content (average about 3 wt%). These characteristics compare well with spent nuclear fuel. The oxidation and formation of secondary minerals from the uraninite have occurred in an environment dominated by components common in host rocks of the Nopal I system (e.g. Si, Ca, K, Na and H2O) and also common to Yucca Mountain. In contrast, secondary phases in most other uranium deposits form from elements largely absent from spent fuel and from the Yucca Mountain environment (e.g. Pb, P and V). The oxidation of Nopal I uraninite and the sequence of alteration products, their intergrowths and morphologies are remarkably similar to those observed in reported corrosion experiments using spent fuel and unirradiated UO2 under conditions intended to approximate those anticipated for the proposed Yucca Mountain repository. The end products of these reported laboratory experiments and the natural alteration of Nopal I uraninite are dominated by uranophane [nominally Ca(UO2)2Si2O7·6H2O] with lesser amounts of soddyite [nominally (UO2)2SiO4·2H2O] and other uranyl minerals. These similarities in reaction product occurrence developed despite the differences in time and physical—chemical environment between Yucca Mountain-approximate laboratory experiments and Yucca Mountain-approximate uraninite alteration at Nopal I, suggesting that the results may reasonably represent phases likely to form during long-term alteration of spent fuel in a Yucca Mountain repository. From this analogy, it may be concluded that the likely compositional ranges of dominant spent fuel alteration phases in the Yucca Mountain environment may be relatively limited and may be insensitive to small variations in system conditions.  相似文献   

13.
Both advocates and critics disagree on the significance and interpretation of critical geological features which relate to the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is recognized readily by geologists and others with a knowledge of nuclear regulatory requirements as an important factor in determining future public and environmental safety. We regard basaltic volcanism as direct and unequivocal evidence of deep-seated geologic instability. Direct disruption of a repository site by basaltic volcanism therefore is a possibility. In this paper, sensitivity analysis of volcanic hazard assessment for the Yucca Mountain site is performed, taking into account some significant geological factors raised by experts. Three types of models are considered in the sensitivity data analysis. The first model assumes that both past and future volcanic activities follow a Homogeneous Poisson Process (HPP). The second model uses a Weibull Process (WP) to estimate the instantaneous recurrence rate based on the historical data at NTS (the Nevada Test Site). The model then switches from a WP of past events to a predictive HPP. The third model assumes that the prior historical trend based on a WP would continue for future activities. Hazards (at least one disruptive event during the next 10,000 years) using both classical and Bayesian approaches are evaluated based on the data for the following two observation periods: Pliocene and younger, and Quaternary. Combinations of various counts of events at volcanic centers of controversy and inclusion (or exclusion) of the youngest date at Lathrop Wells Center (=0.01 Ma) generate 90 different data sets. Sensitivity analysis is performed for each data set and the minimum and the maximum hazards for each model are summarized. We conclude that the estimated overall probability of at least one disruption of a repository at the Yucca Mountain site by basaltic volcanism during the next 10,000 years is bounded between 2.02×105 and 6.57×10–3.  相似文献   

14.
A new conceptual model for release rate of radionuclides from the proposed repository for high level nuclear waste located at Yucca Mountain, Nevada is developed. The model predicts that heat generated from radioactive decay combined with the unsaturated environment will lead to an inward flow system that, under many relevant conditions, will slow the release of and sometimes sequester radionuclides at locations of higher heat release and lower water percolation. The amount of protection will be greatest for more concentrated waste forms such as spent fuel and less for glass waste forms. The redistribution and concentration of the radionuclides is anticipated to significantly delay radionuclide release and create a tendency towards gradual release over time that is independent of localized penetrations of metallic barriers.  相似文献   

15.
Both aquatic and land snails are common in the geologic record, but their utility in dating is greatly restricted by their well-documented tendency to yield14C dates inconsistent with true14C ages. In this study, we examine the use of14C ages from (1) small, previously unstudied, terrestrial snails to date hosting spring deposits and from (2) cooccuring aquatic snails to constrain groundwater travel times during the last glacial period. Our study area in the southern Great Basin encompasses Yucca Mountain, site of the proposed high-level nuclear waste repository, where information on the age and extent of past high water tables and on groundwater flow times is crucial to several licensing issues. Our results show that shells of small terrestrial snails belonging toValloniasp. yield14C dates consistent with14C ages of associated carbonized wood. These results imply that these taxa can provide reliable14C age control on the broadly distributed deposits in which they have been described. In contrast, cooccurring aquatic snails from fossil spring deposits yield14C ages generally greater than the control age. This is because the aquatic shells often formed in spring waters that had an initial14C deficiency. However, the magnitude of the deficiency is much less than that observed in nearby modern springs, arguing for much higher average14C contents in late Pleistocene groundwaters in these basins. If representative, this implies shorter groundwater travel times through aquifers in southern Nevada during late-glacial time.  相似文献   

16.
Gold Valley is typical of intermountain basins in Death Valley National Park (DVNP), California (USA). Using water-balance calculations, a GIS-based analytical model has been developed to estimate precipitational infiltration rates from catchment-scale topographic data (elevation and slope). The calculations indicate that groundwater recharge mainly takes place at high elevations (>1,100?m) during winter (average 1.78?mm/yr). A resistivity survey suggests that groundwater accumulates in upstream compartmentalized reservoirs and that the groundwater flows through basin fill and fractured bedrock. This explains the relationship between the upstream precipitational infiltration in Gold Valley and the downstream spring flow in Willow Creek. To verify the ability of local recharge to support high-flux springs in DVNP, a GIS-based model was also applied to the Furnace Creek catchment. The results produced insufficient total volume of precipitational infiltration to support flow from the main high-flux springs in DVNP under current climatic conditions. This study introduces a GIS-based infiltration model that can be integrated into the Death Valley regional groundwater flow model to estimate precipitational infiltration recharge. In addition, the GIS-based model can efficiently estimate local precipitational infiltration in similar intermountain basins in arid regions provided that the validity of the model is verified.  相似文献   

17.
《Journal of Structural Geology》1999,21(8-9):1027-1038
Large normal faults are corrugated. Corrugations appear to form from overlapping or en échelon fault arrays by two breakthrough mechanisms: lateral propagation of curved fault-tips and linkage by connecting faults. Both mechanisms include localized fault-parallel extension and eventual abandonment of relay ramps. These breakthrough mechanisms produce distinctive hanging wall and footwall geometries indicative of fault system evolution. From such geometries, we can estimate the positions of tilted relay ramps or ramp segments and ramp internal deformation in incompletely exposed or poorly imaged fault systems. We examine the evolution of normal fault corrugations at Fish Slough (California), Yucca Mountain (Nevada), and Pleasant Valley (Nevada), in the Basin and Range province. We discuss how evolution of the Pleasant Valley and Yucca Mountain systems relates to seismicity. For example, the 1915 Pleasant Valley earthquake produced four en échelon ruptures that appeared as overlapping segments of a single immature fault at depth. At Yucca Mountain, we argue that an en échelon array, which includes the Solitario Canyon and Iron Ridge faults, should be considered a single source, such that western Yucca Mountain could experience up to a Mw 6.9 earthquake compared to Mw 6.6 estimates for the largest individual segment.  相似文献   

18.
Yucca Mountain in southern Nevada is being evaluated as a potential site for the geological disposal of high-level nuclear waste. A reliable assessment of the future performance of the repository will require detailed paleohydrogeological information. Hydrogenic secondary minerals from the vadose zone of Yucca Mountain are being studied as paleohydrogeological indicators. A phenomenological model envisaging the deposition of secondary minerals by meteoric fluids infiltrating downward though the vadose zone was proposed in the reviewed paper. Our evaluation reveals that the model is not supported by empiric evidence reported in the paper.  相似文献   

19.
《Applied Geochemistry》2002,17(6):735-750
Calcite and silica form coatings on fracture footwalls and cavity floors in the welded tuffs at Yucca Mountain, the potential site of a high-level radioactive waste repository. These secondary mineral deposits are heterogeneously distributed in the unsaturated zone (UZ) with fewer than 10% of possible depositional sites mineralized. The paragenetic sequence, compiled from deposits throughout the UZ, consists of an early-stage assemblage of calcite±fluorite±zeolites that is frequently capped by chalcedony±quartz. Intermediate- and late-stage deposits consist largely of calcite, commonly with opal on buried growth layers or outermost crystal faces of the calcite. Coatings on steep-dipping fractures usually are thin (⩽3 mm) with low-relief outer surfaces whereas shallow-dipping fractures and lithophysal cavities typically contain thicker, more coarsely crystalline deposits characterized by unusual thin, tabular calcite blades up to several cms in length. These blades may be capped with knobby or corniced overgrowths of late-stage calcite intergrown with opal. The observed textures in the fracture and cavity deposits are consistent with deposition from films of water fingering down fracture footwalls or drawn up faces of growing crystals by surface tension and evaporated at the crystal tips. Fluid inclusion studies have shown that most early-stage and some intermediate-stage calcite formed at temperatures of 35 to 85 °C. Calcite deposition during the past several million years appears to have been at temperatures <30 °C. The elevated temperatures indicated by the fluid inclusions are consistent with temperatures estimated from calcite δ18O values. Although others have interpreted the elevated temperatures as evidence of hydrothermal activity and flooding of the tuffs of the potential repository, the authors conclude that the temperatures and fluid-inclusion assemblages are consistent with deposition in a UZ environment that experienced prolonged heat input from gradual cooling of nearby plutons. The physical restriction of the deposits (and, therefore, fluid flow) to fracture footwalls and cavity floors and the heterogeneous and limited distribution of the deposits provides compelling evidence that they do not reflect flooding of the thick UZ at Yucca Mountain. The textures and isotopic and chemical compositions of these mineral deposits are consistent with deposition in a UZ setting from meteoric waters percolating downward along fracture flow paths.  相似文献   

20.
Natural analogues provide an approach to characterize and test the long‐term modelling of a repository performance. This article presents geochemical information about the alteration conditions of the Nopal I uranium deposit, Mexico, an analogue for the proposed Yucca Mountain radioactive waste repository. Mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous, according to petrographic observations. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions and further precipitation under reducing conditions. O‐ and H‐isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25–75 °C, a low‐temperature context, unusual for volcanic‐hosted uranium deposits. This temperature range is compatible with some post‐closure evolution models of the proposed Yucca Mountain repository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号