首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coupled reactive transport models of hydrothermal systems provide new insights and deeper understanding of the processes occurring due to fluid flow, heat transfer, solute transport, and chemical reactions. Basic concepts of species transport (diffusion, dispersion, and advection) and chemical precipitation and dissolution reactions are discussed, and five end-member types of reactive transport environments are introduced. One of these reactive transport environments, named ‘reactions within thermal gradients’, is used to demonstrate how free thermal convection can lead to redeposition of minerals and, due to the feedback of reaction on the flow field, a change of the convection pattern. The direct consequence of changing the flow field is a significant variation of the temperature distribution within the modelled area. With the example it is shown how reactive transport simulation can be applied for the detailed study of fossil and recent hydrothermal systems.  相似文献   

2.
We compare the performance of the fully coupled Newton–Raphson method with the sequential iteration approach (SIA) for solving the implicit time stepping equations of reactive transport modeling. We formulate the implicit time stepping equations for a demonstration model that incorporates homogeneous equilibrium reactions, i.e. carbonate hydrolysis, and a heterogeneous equilibrium reaction, i.e. the dissolution/precipitation of calcite. The demonstration model uses a coupled pair of mixing cells as a simplified form of transport. The effects of the homogeneous and heterogeneous reactions on the iterative methods are demonstrated.  相似文献   

3.
Transport processes in heterogeneous porous media are often treated in terms of one-equation models. Such treatment assumes that the velocity, pressure, temperature, and concentration can be represented in terms of a single large-scale averaged quantity in regions having significantly different mechanical, thermal, and chemical properties. In this paper we explore the process of single-phase flow in a two-region model of heterogeneous porous media. The region-averaged equations are developed for the case of a slightly compressible flow which is an accurate representation for a certain class of liquid-phase flows. The analysis leads to a pair of transport equations for the region averaged pressures that are coupled through a classic exchange term, in addition to being coupled by a diffusive cross effect. The domain of validity of the theory has been identified in terms of a series of length and timescale constraints.In Part II the theory is tested, in the absence of adjustable parameters, by comparison with numerical experiments for transient, slightly compressible flow in both stratified and nodular models of heterogeneous porous media. Good agreement between theory and experiment is obtained for nodular and stratified systems, and effective transport coefficients for a wide range of conditions are presented on the basis of solutions of the three closure problems that appear in the theory. Part III of this paper deals with the principle of large-scale mechanical equilibrium and the region-averaged form of Darcy's law. This form is necessary for the development and solution of the region-averaged solute transport equations that are presented in Part IV. Finally, in Part V we present results for the dispersion tensors and the exchange coefficient associated with the two-region model of solute transport with adsorption.  相似文献   

4.
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid‐rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult‐to‐use models. To address the need for a simple and easy‐to‐use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two‐dimensional, constant‐density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature‐dependent cation exchange. VS2DRTI is freely available public domain software.  相似文献   

5.
6.
We address the question of how one can combine theoretical and numerical modeling approaches with limited measurements from laboratory flow cell experiments to realistically quantify salient features of complex mixing-driven multicomponent reactive transport problems in porous media. Flow cells are commonly used to examine processes affecting reactive transport through porous media, under controlled conditions. An advantage of flow cells is their suitability for relatively fast and reliable experiments, although measuring spatial distributions of a state variable within the cell is often difficult. In general, fluid is sampled only at the flow cell outlet, and concentration measurements are usually interpreted in terms of integrated reaction rates. In reactive transport problems, however, the spatial distribution of the reaction rates within the cell might be more important than the bulk integrated value. Recent advances in theoretical and numerical modeling of complex reactive transport problems [De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A. A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 2005;41:W11410. doi: 10.1029/2005WR004056, De Simoni M, Sanchez-Vila X, Carrera J, Saaltink MW. A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 2007;43:W07419. doi: 10.1029/2006WR005256] result in a methodology conducive to a simple exact expression for the space–time distribution of reaction rates in the presence of homogeneous or heterogeneous reactions in chemical equilibrium. The key points of the methodology are that a general reactive transport problem, involving a relatively high number of chemical species, can be formulated in terms of a set of decoupled partial differential equations, and the amount of reactants evolving into products depends on the rate at which solutions mix. The main objective of the current study is to show how this methodology can be used in conjunction with laboratory experiments to properly describe the key processes that occur in a complex, geochemically-active system under chemical equilibrium conditions. We model three CaCO3 dissolution experiments reported in Singurindy et al. [Singurindy O, Berkowitz B, Lowell RP. Carbonate dissolution and precipitation in coastal environments: Laboratory analysis and theoretical consideration. Water Resour Res 2004;40:W04401. doi: 10.1029/2003WR002651, Singurindy O, Berkowitz B, Lowell RP. Correction to Carbonate dissolution and precipitation in coastal environments: laboratory analysis and theoretical consideration. Water Resour Res 2005;41:W11701. doi: 10.1029/2005WR004433], in which saltwater and freshwater were mixed in different proportions. The integrated reaction rate within the cell estimated from the experiments are modeled independently by means of (a) a state-of-the-art reactive transport code, and (b) the uncoupled methodology of [12, 13], both of which use dispersivity as a single, adjustable parameter. The good agreement between the results from both methodologies demonstrates the feasibility of using simple solutions to design and analyze laboratory experiments involving complex geochemical problems.  相似文献   

7.
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O–CO2–Na–Cl–CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach high CO2 concentrations quite rapidly. We conclude that carbonate dissolution needs not to be feared.  相似文献   

8.
9.
We review the analysis of the dynamics of reactive transport in disordered media, emphasizing the nature of the chemical reactions and the role of small-scale fluctuations induced by the structure of the porous medium. We are motivated by results and interpretations of laboratory-scale experiments, for which detailed characterization of the system is possible. Modeling approaches based on continuum and particle tracking (PT) schemes are examined critically, highlighting how fluctuations are incorporated. The continuum approach spans a large literature. Traditional formats of reactive transport equations, such as the advection–dispersion–reaction equation (ADRE), are based on a series of assumptions related mainly to scale separation and relative magnitude of time scales involved in the reactive transport setting. These assumptions as well as further developments are assessed in depth. PT methods offer an alternative means of accounting for pore-scale dynamics, wherein space–time transitions are drawn from appropriate probability distributions that have been tested to account for anomalous transport. While PT methods have been employed for many years to describe conservative transport, their application to laboratory-scale reactive transport problems in the context of both Fickian and non-Fickian regimes is relatively recent. We concentrate on experimental observations of different types of reactions in disordered media: (1) the dynamics of a bimolecular reactive transport (A + B  C) in passive (non-reactive) media, and (2) a multi-step chemical reaction, as exemplified in the process of dedolomitization involving both dissolution and precipitation. The fluctuations in a number of the key variables controlling the processes prove to have a dominant role; elucidation of this role forms the basis of the present study and the comparison of methods.  相似文献   

10.
This pore-scale modeling study in saturated porous media shows that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough. We performed flow and transport simulations in two-dimensional pore-scale domains with different arrangement of the solid grains leading to distinct characteristics of flow variability and connectivity, representing mildly and highly heterogeneous porous media, respectively. The results obtained for a range of average velocities representative of groundwater flow (0.1–10 m/day), show significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing, a transient flux-related dilution index that allows quantifying the evolution of solute dilution at a given position along the main flow direction. For the different solute transport scenarios we obtained dilution breakthrough curves that complement and add important information to traditional solute breakthrough curves. Such dilution breakthrough curves allow capturing the compound-specific mixing of the different solutes and provide useful insights on the interplay between advective and diffusive processes, mass transfer limitations, and incomplete mixing in the heterogeneous pore-scale domains. The quantification of dilution for conservative solutes is in good agreement with the outcomes of mixing-controlled reactive transport simulations, in which the mass and concentration breakthrough curves of the product of an instantaneous transformation of two initially segregated reactants were used as measures of reactive mixing.  相似文献   

11.
12.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   

13.
A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated‐Zone Flow (UZF1) package and MODFLOW. Referred to as UZF‐RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS‐1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one‐dimensional, two‐dimensional, and three‐dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF‐RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run‐time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic‐wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF‐RT3D can be used for large‐scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary‐pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run‐time and the ability to include site‐specific chemical species and chemical reactions make UZF‐RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large‐scale subsurface systems.  相似文献   

14.
《Journal of Hydrology》1999,214(1-4):144-164
A general 2-D finite element multi-component reactive transport code, TRANQUI, was developed, using a sequential iteration approach (SIA). It is well suited to deal with complex real-world thermo-hydro-geochemical problems for single-phase variably water saturated porous media flow systems. The model considers a wide range of hydrological and thermodynamic as well as chemical processes such as aqueous complexation, acid-base, redox, mineral dissolution/precipitation, gas dissolution/ex-solution, ion exchange and adsorption via surface complexation. Under unsaturated conditions only water flow is considered, although gas pressures are allowed to vary in space in a depth-dependent manner specified by the user. In addition to the fully iterative sequential approach (SIA), a sequential non-iterative approach (SNIA), in which transport and chemistry are de-coupled, was implemented and tested. The accuracy and numerical performance of SIA and SNIA have been compared using several test cases. The accuracy of SNIA depends on space and time discretization as well as on the nature of the chemical reactions. The capability of the code to model a real case study in the field is illustrated by its application to the modeling of the hydrochemical evolution of the Llobregat Delta aquitard in northeastern Spain over the last 3500 years during when fresh-water flow from a lower aquifer displaced the native saline aquitard waters. Manzano and Custodio carried out a reactive transport model of this case study by using the PHREEQM code and considering water flow, aqueous complexation, cation exchange and calcite dissolution. Their results compare favorably well with measured porewater chemical data, except for some of the cations. Our code is not only able to reproduce the results of previous numerical models, but leads to computed concentrations which are closer to measured data mainly because our model takes into consideration redox processes in addition to the processes mentioned above. A number of sensitivity runs were performed with TRANQUI in order to analyze the effect of errors and uncertainties on cation selectivities.  相似文献   

15.
We consider an Eulerian–Lagrangian localized adjoint method (ELLAM) applied to nonlinear model equations governing solute transport and sorption in porous media. Solute transport in the aqueous phase is modeled by standard advection and hydrodynamic dispersion processes, while sorption is modeled with a nonlinear local-equilibrium model. We present our implementation of finite volume ELLAM (FV-ELLAM) and finite element (FE-ELLAM) discretizations to the reactive transport model and evaluate their performance for several test problems containing self-sharpening fronts.  相似文献   

16.
Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.  相似文献   

17.
Variations in fluid density can greatly affect fluid flow and solute transport in the subsurface. Heterogeneities such as fractures play a major role for the migration of variable-density fluids. Earlier modeling studies of density effects in fractured media were restricted to orthogonal fracture networks, consisting of only vertical and horizontal fractures. The present study addresses the phenomenon of 3D variable-density flow and transport in fractured porous media, where fractures of an arbitrary incline can occur. A general formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulation results are presented that show the verification of the new model formulation, for the porous matrix and for inclined fractures. Simulations of variable-density flow and solute transport are then conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the high-permeability fracture acts as a barrier for convection. Other simulations were run to investigate the influence of fracture incline on plume migration. Finally, tabular data of the tracer breakthrough curve in the inclined fracture is given to facilitate the verification of other codes.  相似文献   

18.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

19.
In general, the accuracy of numerical simulations is determined by spatial and temporal discretization levels. In fractured porous media, the time step size is a key factor in controlling the solution accuracy for a given spatial discretization. If the time step size is restricted by the relatively rapid responses in the fracture domain to maintain an acceptable level of accuracy in the entire simulation domain, the matrix tends to be temporally over-discretized. Implicit sub-time stepping applies smaller sub-time steps only to the sub-domain where the accuracy requirements are less tolerant and is most suitable for problems where the response is high in only a small portion of the domain, such as within and near the fractures in fractured porous media. It is demonstrated with illustrative examples that implicit sub-time stepping can significantly improve the simulation efficiency with minimal loss in accuracy when simulating flow and transport in fractured porous media. The methodology is successfully applied to density-dependent flow and transport simulations in a Canadian Shield environment, where the flow and transport is dominated by discrete, highly conductive fracture zones.  相似文献   

20.
Lessons Learned from 25 Years of Research at the MADE Site   总被引:2,自引:0,他引:2  
Field studies at well‐instrumented research sites have provided extensive data sets and important insights essential for development and testing of transport theories and mathematical models. This paper provides an overview of over 25 years of research and lessons learned at one of such field research sites on the Columbus Air Force Base in Mississippi, commonly known as the Macrodispersion Experiment (MADE) site. Since the mid‐1980s, field data from the MADE site have been used extensively by researchers around the world to explore complex contaminant transport phenomena in highly heterogeneous porous media. Results from field investigations and modeling analyses suggested that connected networks of small‐scale preferential flow paths and relative flow barriers exert dominant control on solute transport processes. The classical advection‐dispersion model was shown to inadequately represent plume‐scale transport, while the dual‐domain mass transfer model was found to reproduce the primary observed plume characteristics. The MADE site has served as a valuable natural observatory for contaminant transport studies where new observations have led to better understanding and improved models have sprung out analysis of new data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号