首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 109 毫秒
1.
《Applied Geochemistry》2001,16(3):363-374
The Nordåsvannet fjord in western Norway is a modern semi-enclosed basin suitable for studying sedimentary cycles as they occur under anoxic bottom conditions. It is characterized by strongly anoxic conditions in the water column and bottom sediments. Diagenetic pyrite formation occurs in the sediments, and syngenetic pyrite is formed in the lower water column. Organic matter burial in the fjord exceeds that of other environments with normal marine or upwelling conditions. This is due to the better preservation of organic matter. Organic matter composition appears to have changed over time with higher fractions of terrigenous organic matter being present in the most recent sediments. This may be a result of increased input of terrigenous organic matter, possibly due to sewage supply to the fjord over the last decades. Organic C and CaCO3 contents of the sediments do not appear to reflect a productivity signal. Calcium carbonate content is influenced by chemogenic calcite formation. Biogenic opal content appears to reflect a productivity signal, but different degrees of dissolution may obscure its clear recognition.  相似文献   

2.
Geochemical studies of the trace metal concentrations in suspended particulate matter (SPM) and sediment trap material from a permanently anoxic fjord, Framvaren, South Norway in 1989 and 1993 indicate that extremely high concentrations of zinc (max = 183920 mg/kg), copper (max = 4130 mg/kg), lead (max = 2752 mg/kg), and cadmium (max= 8.1 mg/kg) sometimes (1993) occur in the SPM collected in the anoxic water layer. The highest concentrations of Zn occur just below the redoxcline at 22 m water depth (in 1993), and copper, lead and cadmium have maximum concentrations between 30 and 80 m depth, where the amount of total SPM is at a minimum (about 0.3 mg/L). On a mass per volume (g/L) basis, the maximum concentrations of Cd, Cu and Fe occur at the interface (21m) and those of Zn occur just below the redoxcline (22 m depth). The SPM and sediment trap data suggest that the metals are precipitated as sulfide minerals in the anoxic water. The presence of particulate sulfides was confirmed by SEM studies that show the occurrence of discrete metal (Cu, Fe, Pb, and Zn) sulfide particles in size from 10–20 m as well as framboidal pyrites (1–5 m in size). Higher levels of metal sulfides at intermediate depths rather than in the deep water of Framvaren (> 100 m), may be due to input of trace metals by water exchange over the sill in the upper part of the water column. In the deep water, less metal sulfide precipitation takes place due to depletion of trace metals, and the dilution of particulate metal concentrations by organic matter and by the chemogenic formation of calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号