首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The objective of this case study was to calibrate and verify detailed transport model of sediment in a 4‐kilometre stretch of the middle Elbe floodplains in Germany. The hydraulic RMA‐2 model and the SED2d‐WES sediment transport model were used. These models were calibrated and validated by detailed measurement of the surface water elevations, the velocities at six profiles, and the suspended sediment concentration and deposition (by means of 10 sediment traps). The flow was modelled for three steady‐state discharges. The surface water elevations were calculated to an accuracy of less than 5 cm compared to measurements. The differences between the calculated and measured velocities were with one exception smaller than 0.2 m/s (measured range 0.1…?1.0 m/s). An average sediment input of 35 g/(m2 d) was calculated for the flood event studied. The highest calculated sedimentation rates of 700 g/(m2 d) (dry density 90 kg/m3) occurred in quiescent zones and abandoned channels. Twenty‐five percent of the deposited sediment settled in the quiescent zones (which only account for 13% of the area). The most sensitive parameters of the sediment transport model were the settling velocity and critical shear stress. The modelling techniques used allowed sediment deposition on the floodplains of the Elbe to be realistically depicted.  相似文献   

2.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Mathematical modelling of overbank inundation and flows faces many problems and is still in its infancy. Work to date has generally been restricted to small reaches. Large-scale models based on longer reaches of river channel are likely to be of greater value for engineering and flood plain management purposes, but the problems associated with the transition from small to large scales need to be assessed. A large-scale finite element model, RMA-2, has been applied to the flood plain of the lower reaches of the River Culm in southeast Devon, UK. Patterns of radiocaesium accumulation by overbank accretion during flood water inundation were used to assess the potential of using such models for explaining sedimentation rates and patterns. A strong correlation was found between values of the 137Cs inventory and surface concentration and the predicted flood water patterns derived using the RMA-2 model. Except where recession pondage occurs, an inverse relationship existed between 137Cs deposition and water depth. However, the discretization model developed cannot presently cope with large-scale compartmentalization of flows by barriers to flow and small-scale local features, such as ditches crossing the flood plain and the microtopography of the flood plain. This study appraises the potential for using the RMA-2 model to predict patterns of overbank deposition and represents an initial stage in the development of an integrated model of hydraulic and sediment dynamics.  相似文献   

4.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A physical model for the transport and deposition of particles in lakes is formulated mathematically, solved numerically, compared with some field results available in the literature, and used to simulate the effects of coagulation and sedimentation in some limnetic systems. The results indicate that these processes exert significant and perhaps controlling effects on the transport and fate of particles and associated pollutants and nutrients in lakes.  相似文献   

6.
7.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

8.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical simulation of flows in shallow reservoirs has to be checked for its consistency in predicting real flow conditions and sedimentation patterns. Typical flow patterns may exhibit flow separation at the inlet, accompanied by several recirculation and stagnation areas all over the reservoir surface. The aim of the present research project is to study the influence of the geometry of a reservoir on sediment transport and deposition numerically and experimentally, focusing on a prototype reservoir depth between 5 and 15 m as well as suspended sediment transport.
A series of numerical simulations is presented and compared with scaled laboratory experiments, with the objective of testing the sensitivity to different flow and sediment parameters and different turbulence closure schemes. Different scenarios are analyzed and a detailed comparison of preliminary laboratory tests and some selected simulations are presented.
The laboratory experiments show that suspended sediment transport and deposition are determined by the initial flow pattern and by the upstream and downstream boundary conditions. In the experiments, deposition in the rectangular basin systematically developed along the left bank, although inflow and outflow were positioned symmetrically along the centre of the basin. Three major horizontal eddies developed influencing the sediment deposition pattern. Although asymmetric flow patterns are privileged, a symmetric pattern can appear from time to time. This particular behaviour could also be reproduced by a two-dimensional depth-averaged flow and sediment transport model (CCHE2D). The paper presents numerical simulations using different turbulence closure schemes (k-ε and eddy viscosity models). In spite of the symmetric setup, these generally produced an asymmetric flow pattern that can easily switch sides depending on the assumptions made for the initial and boundary conditions. When using the laboratory experiment as a reference, the most reliable numerical results have been obtai  相似文献   

10.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
This study aims at comparing and contrasting two different models for sand transport by currents in a shallow sea to illustrate the effect of velocity veering. The first model uses the Bailard-type formulation, which allows calculation of erosion/deposition rates at a fixed location on the sea floor via the divergence of horizontal sediment fluxes. The second model is a semi-analytical 2.5-dimensional model, which takes into account the time lag between erosion and deposition events and the velocity veering within the sediment-laden (nepheloid) layer caused by the Coriolis force. The velocity veering implies that the direction of the sediment flux is generally different from the direction of the surface flow. The latter model was designed for rapid, semi-analytical computations of sediment transport, using flow fields from 2-DH numerical models. The two models use a matching set of parameters to provide identical values for the bottom stress and suspended sediment load for a uniform steady current at any given surface velocity. The two models were compared in a range of sand grain sizes 50–500 m and current speeds up to 1 m s–1 for an idealised square region (100 × 100 km) of a shelf sea of constant depth. The erosion/deposition patterns and suspension load were examined in three settings: (1) uniform steady flow, (2) straight jet, (3) meandering jet. It was found that both the rates and, in particular, the spatial distribution of the areas of erosion/deposition differ significantly between the models in cases (2) and (3). This difference can be attributed to additional flux divergence due to velocity veering. A comparison of model results with field data, collected at Long Island Shelf, supports the relevance of Coriolis-induced veering of currents on the direction of the sediment flux.Responsible Editor: Jens Kappenberg  相似文献   

12.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
To find turbulent flow structure inside meandering channels, three physical models of river meanders representing strongly curved bend, mild bend and elongated symmetrical meander loop were tested in this paper. Instantaneous velocity data in three dimensions were measured using Micro-ADV at different cross sections of these models. Depth averaged velocity vectors, streamwise velocity, secondary currents, turbulent and mean flow kinetic energy were investigated with respect to the sediment deposition pattern. In order to gain more regarding the force acting the sediment particles, three dimensional velocity fluctuations were analyzed in detailed inside the elongated symmetrical meander loop. Occurrence frequency, transition probability and angle of attack for different events were also computed for the points close to the bed. Of the present results, the importance of sweeps and ejections on sediment deposition can be detected. Further, distribution of bursting events is presented through the water column and compared the results with the previous works. Importantly, occurrence of fluctuating velocities in three dimensions at different locations inside the river meanders in addition to the effect of mean flow and turbulent components is responsible for sediment transport. Streamwise velocity distribution through the depth is also compared with some previous mathematical models. Researchers seeking the better control over the river morphology can apply this method without sacrificing much time and cost. This study is also included some insights to be pursued by future works.  相似文献   

14.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Stochastic dose estimation for inhaled particulates   总被引:1,自引:1,他引:0  
 The inherent variability of morphological and physiological parameters can cause significant statistical variations in the deposition patterns of inhaled particles in the human lungs. From a dosimetric point of view, the two major sources of variability are (i) the statistical distribution of particles deposited among all airways in a given generation, caused by the biological variability of the lung structure, and (ii) the local distribution of particles deposited within a given airway bifurcation resulting from the inhomogeneity of flow patterns and associated deposition mechanisms. Due to the stochastic nature of particle transport within the lungs in general, and within airway bifurcations in particular, this variability can be described mathematically by stochastic models. In addition to average values, stochastic models also provide information about the statistical distributions of deposition patterns, reflecting intra- and intersubject variability in particle deposition.  相似文献   

16.
Effects of silt loading on turbulence and sand transport   总被引:2,自引:1,他引:1  
The transport of bed material and fluid turbulence are affected by many factors,including the fine sediment load being carried in a channel.Current research has focused on sand-sized particles introduced to gravel beds,while the effect of silt load on sand transport has received less attention. Experiments on the effects of silt load,in concentrations 0-26,900 mg l-1,on sand transport were performed with a recirculating laboratory flume using three different sand bed configurations:ripples (Fr=0.24),dunes(Fr=0.34),and dunes(Fr=0.48).Three Acoustic Doppler Velocimeters were arranged to measure flow and turbulence quantities simultaneously in one vertical.Sand transport did not change in a consistent manner with increasing silt load,increasing up to 4,000 mg l-1 for dunes (Fr=0.48) and up to 2,000 mg l-1 for dunes(Fr=0.34) and then declining to near the clear water case with increasing silt concentrations.Silt addition for the ripple case caused a relatively small change in sand transport,decreasing with added silt up to approximately 2,000 mg l-1 and then increasing as silt went up to approximately 10,000 mg l-1.Dunes(Fr=0.48) decreased in length and height as silt increased,while dunes(Fr=0.34) did not show a consistent trend.A clear trend of decreasing Reynolds stress with increasing silt concentration was observed in the ripple case,with a 33% reduction in near-bed Reynolds stress caused by an 8,900 mg l-1 concentration of silt.  相似文献   

17.
This study investigates the association between mean and turbulent flow variables and the movement of individual particles in a gravel‐bed river. The experimental design implemented in the Eaton‐North River (Québec, Canada) is based on the simultaneous observations at a high temporal resolution of both particle movements as bedload using an underwater video camera and of the streamwise and vertical flow velocity components using a vertical array of three electromagnetic current meters (ECMs). The frequency and distance of displacement of particles larger than 20 mm that were sliding or rolling on the bed were measured from a 10 minutes long film. Mean and turbulent flow properties obtained for periods without sediment transport are compared to those when particles were sliding and rolling. When particles are sliding, weak differences are present for the mean streamwise velocity and normal vertical stresses. Instantaneous Reynolds shear stresses are significantly lower for sliding events which was not expected but could be explained by the important dominance of Quadrant 3 events (inward interactions). When particles are rolling, only the vertical normal stresses show a weak difference from those observed in the absence of transport but they tend to occur when Quadrant 2 (ejections) dominate the flow field. For both sliding and rolling particles, vertical and/or streamwise fluid accelerations show high magnitude values when compared to periods without transport. For sliding particles, streamwise acceleration is mostly negative and combines most of the time with a positive vertical acceleration. For rolling particles, streamwise and vertical acceleration are predominantly of opposite sign. These results suggest that fluid acceleration or deceleration in the streamwise and vertical directions is affecting the pressure field around particles. In this study, fluid acceleration seems to play a more important role than Reynolds shear stress or normal stresses for bedload movements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Distributed physically based erosion and phosphorus (P) transport models, run by the overland flow model described in Taskinen and Bruen (2006. Hydrological Processes 20 : this issue), are described. In the erosion model, the additional components to the basic model were the outflow of the particles by infiltration and a new model component, i.e. deposition when rainfall stops. Two ways of calculating the shielding factor due to the flow depth were compared. The P transport model had both dissolved P (DP) and particulate P (PP) components. The processes included in the DP model were desorption from the soil surface, advection, storage in the overland flow and infiltration. The PP model accounted for advection, storage in the flow, infiltration, detachment from the soil surface by flow and rainfall and deposition both when transport capacity of suspended solids (SS) is exceeded and when rainfall ceases. When the models were developed and validated in small agricultural fields of cohesive soil types in southern Finland, comparisons were made between corresponding processes and the significance of added components were estimated in order to find out whether increased model complexity improves the model performance. The sedigraphs were found to follow the dynamics of rainfall, emphasizing the importance of the rainfall splash component. The basic model was too slow to react to changes in rainfall and flow rates, but infiltration and deposition that acts during the cessation in rainfall improved the model significantly by enabling the modelled SS to fall sharply enough. The shielding effect of flow depth from the splash detachment was found to play a significant role. Transport capacity should also be included in erosion models when they are applied to cohesive soils. In this study, the Yalin method worked well. A strong correlation was obvious between the measured SS and total P concentrations, indicating that the main form of P in runoff is PP. This emphasizes the importance of a good sediment transport model in P transport modelling. The submodel used for DP desorption from the soil surface produced plausible results without any calibration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号