首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a coupling of a finite element model with a metaheuristic optimization algorithm for solving the inverse problem in groundwater flow (Darcy's equations). This coupling performed in 2 phases is based on the combination of 2 codes: This is the HySubF‐FEM code (hydrodynamic of subsurface flow by finite element method) used for the first phase allowing the calculation of the flow and the CMA‐ES code (covariance matrix adaptation evolution strategy) adopted in the second phase for the optimization process. The combination of these 2 codes was implemented to identify the transmissivity field of groundwater by knowing the hydraulic head in some point of the studied domain. The integrated optimization algorithm HySubF‐FEM/CMA‐ES has been validated successfully on a schematic case offering an analytical solution. As realistic application, the integrated optimization algorithm HySubF‐FEM/CMA‐ES was applied to a complex groundwater in the north of France to identify the transmissivity field. This application does not use zonation techniques but solves an optimization problem at each internal node of the mesh. The obtained results are considered excellent with high accuracy and fully consistent with the hydrogeological characteristics of the studied aquifer.However, the various numerical simulations performed in this paper have shown that the CMA‐ES algorithm is time‐consuming. Finally, the paper concludes that the proposed algorithm can be considered as an efficient tool for solving inverse problems in groundwater flow.  相似文献   

2.
In this work we develop a new multiscale procedure to compute numerically the statistical moments of the stochastic variables which govern single phase flow in heterogeneous porous media. The technique explores the properties of the log-normally distributed hydraulic conductivity, characterized by power-law or exponential covariances, which shows invariance in its statistical structure upon a simultaneous change of the scale of observation and strength of heterogeneity. We construct a family of equivalent stochastic hydrodynamic variables satisfying the same flow equations at different scales and strengths of heterogeneity or correlation lengths. Within the new procedure the governing equations are solved in a scaled geology and the numerical results are mapped onto the original medium at coarser scales by a straightforward rescaling. The new procedure is implemented numerically within the Monte Carlo algorithm and also in conjunction with the discretization of the low-order effective equations derived from perturbation analysis. Numerical results obtained by the finite element method show the accuracy of the new procedure to approximated the two first moments of the pressure and velocity along with its potential in reducing drastically the computational cost involved in the numerical modeling of both power-law and exponential covariance functions.  相似文献   

3.
本文实现了一种面向目标自适应海洋可控源电磁三维矢量有限元方法.为满足三维复杂电性结构模拟的需求,网格剖分采用非结构化六面体.在组装刚度矩阵之后,形成的大型复数线性方程组分解为等价的实数形式,利用带预条件的广义最小残差法进行求解.在获得微分方程的解之后,为提高解的准确性,通过面向目标的自适应误差估计来指示网格细化,重点加密能使观测点数值模拟精度提高的网格.对于大规模三维数据,为了使模型空间的并行计算达到均衡负载的效果,我们使用METIS函数库来进行网格计算任务量的划分.最后,通过对比一维解析解与三维自适应矢量有限元计算结果,验证了程序的正确性;通过自适应过程中误差指示子的分布,验证了面向目标自适应的有效性;通过对三维复杂模型进行均衡负载下的并行计算,测试了程序的可扩展性.  相似文献   

4.
We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1–3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.  相似文献   

5.
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.  相似文献   

6.
Flow of nonvolatile nonaqueous phase liquid (NAPL) and aqueous phases that account for mobile, entrapped, and residual NAPL in variably saturated water-wet porous media is modeled and compared against results from detailed laboratory experiments. Residual saturation formation in the vadose zone is a process that is often ignored in multifluid flow simulators, which might cause an overestimation of the volume of NAPL that reaches the ground water. Mobile NAPL is defined as being continuous in the pore space and flows under a pressure gradient or gravitational body force. Entrapped NAPL is defined as being occluded by the aqueous phase, occurring as immobile ganglia surrounded by aqueous phase in the pore space and formed when NAPL is replaced by the aqueous phase. Residual NAPL is defined as immobile, nonwater entrapped NAPL that does not drain from the pore spaces and is conceptualized as being either continuous or discontinuous. Free NAPL comprises mobile and residual NAPL. The numerical model is formulated on mass conservation equations for oil and water, transported via NAPL and aqueous phases through variably saturated porous media. To account for phase transitions, a primary variable switching scheme is implemented for the oil-mass conservation equation over three phase conditions: (1) aqueous or aqueous-gas with dissolved oil, (2) aqueous or aqueous-gas with entrapped NAPL, and (3) aqueous or aqueous gas with free NAPL. Two laboratory-scale column experiments are modeled to verify the numerical model. Comparisons between the numerical simulations and experiments demonstrate the necessity to include the residual NAPL formation process in multifluid flow simulators.  相似文献   

7.
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO2 leakage problem as well as to field data from a CO2 production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO2 is leaking upward responds to the mass flow rate of CO2-water mixture.  相似文献   

8.
Fractional flow formulations of the multi-phase flow equations exhibit several attractive attributes for numerical simulations. The governing equations are a saturation equation having an advection diffusion form, for which characteristic methods are suited, and a global pressure equation whose form is elliptic. The fractional flow approach to the governing equations is compared with other approaches and the implication of equation form for numerical methods discussed. The fractional flow equations are solved with a modified method of characteristics for the saturation equation and a finite element method for the pressure equation. An iterative algorithm for determination of the general boundary conditions is implemented. Comparisons are made with a numerical method based on the two-pressure formulation of the governing equations. While the fractional flow approach is attractive for model problems, the performance of numerical methods based on these equations is relatively poor when the method is applied to general boundary conditions. We expect similar difficulties with the fractional flow approach for more general problems involving heterogenous material properties and multiple spatial dimensions.  相似文献   

9.
We present a numerical, catchment-scale model that solves flow equations of surface and subsurface flow in a three-dimensional domain. Surface flow is described by the two-dimensional parabolic approximation of the St. Venant equation, using Manning’s equation of motion; subsurface flow is described by the three-dimensional Richards’ equation for the unsaturated zone and by three-dimensional Darcy’s law for the saturated zone, using an integrated finite difference formulation. The hydrological component is a dynamic link library implemented within a comprehensive model which simulates surface energy, radiation budget, snow melt, potential evapotranspiration, plant development and plant water uptake. We tested the model by comparing distributed and integrated three-dimensional simulated and observed perched water depth (PWD), stream flow data, and soil water contents for a small catchment. Additional tests were performed for the snow melting algorithm as well as the different hydrological processes involved. The model successfully described the water balance and its components as evidenced by good agreement between measured and modelled data.  相似文献   

10.
Transport processes that lead to exchange of mass between surface water and groundwater play a significant role for the ecological functioning of aquatic systems, for hydrological processes and for biogeochemical transformations. In this study, we present a novel integral modeling approach for flow and transport at the sediment–water interface. The model allows us to simultaneously simulate turbulent surface and subsurface flow and transport with the same conceptual approach. For this purpose, a conservative transport equation was implemented to an existing approach that uses an extended version of the Navier–Stokes equations. Based on previous flume studies which investigated the spreading of a dye tracer under neutral, losing and gaining flow conditions the new solver is validated. Tracer distributions of the experiments are in close agreement with the simulations. The simulated flow paths are significantly affected by in- and outflowing groundwater flow. The highest velocities within the sediment are found for losing condition, which leads to shorter residence times compared to neutral and gaining conditions. The largest extent of the hyporheic exchange flow is observed under neutral condition. The new solver can be used for further examinations of cases that are not suitable for the conventional coupled models, for example, if Reynolds numbers are larger than 10. Moreover, results gained with the integral solver provide high-resolution information on pressure and velocity distributions at the rippled streambed, which can be used to improve flow predictions. This includes the extent of hyporheic exchange under varying ambient groundwater flow conditions.  相似文献   

11.
We propose a new data assimilation algorithm for shallow water equations in one dimension. The algorithm is based upon Discontinuous Galerkin spatial discretization of shallow water equations (DG-SW model) and the continuous formulation of the minimax filter. The latter allows for construction of a robust estimation of the state of the DG-SW model and computes worst-case bounds for the estimation error, provided the uncertain parameters belong to a given bounding set. Numerical studies show that, given sparse observations from numerical or physical experiments, the proposed algorithm quickly reconstructs the true solution even in the presence of shocks, rarefaction waves and unknown values of model parameters. The minimax filter is compared against the ensemble Kalman filter (EnKF) for a benchmark dam-break problem and the results show that the minimax filter converges faster to the true solution for sparse observations.  相似文献   

12.
全波形反演方法是一种数据域高精度反演方法,该方法通过匹配观测数据与模拟数据的地震波形,利用梯度法准确反演地下介质参数的分布情况.由于观测数据普遍缺少低频信息,该方法易受周期跳跃现象影响.特别是当地下存在大尺度强反射界面的构造时,地下介质的反演转化为强非线性问题求解.该情形下,即使观测数据包含充足的低频信息,全波形反演也难以给出准确的反演结果.一般可以通过减弱反演对初始模型参数的依赖性来克服上述问题,具体表现为使用新变量(例如瞬时相位、包络等)代替目标函数中的采样后波场,以增强新目标函数的凸性.但是,对该新目标函数进行反演时,伴随状态方程中存在关于新变量和波场的一个链式微分项,该项保留了反演问题的非线性,导致新的反演方法难以处理包含大尺度构造的强非线性反演问题.此外,基于新变量的反演问题依然在波场空间中计算模型梯度,难以充分利用新变量与模型参数之间的弱非线性关系.因此,本文提出用频率域波动方程的相位形式代替传统的波动方程来消除伴随状态方程中的链式微分项,用解缠绕的相位代替目标函数中采样前波场并在相位空间进行反演.该方法可以最大程度地利用地下介质参数和解缠绕相位之间的弱非线性关系,从而削弱反演的非线性性.由于基于频率域波场计算得到相位有严重的缠绕问题,本文采用基于振幅排序的多聚类算法来对相位进行解缠绕.虽然将介质参数到波场的映射替换为介质参数与解缠绕相位的映射,会导致反演结果的分辨率有所下降,但该方法可以在相位空间恢复介质参数的大尺度低波数分量.Marmousi模型测试证明了该方法的有效性和准确性,针对部分BP模型的测试也证明了该方法处理强非线性问题的能力.  相似文献   

13.
14.
《国际泥沙研究》2020,35(4):395-407
A two-dimensional vertical (2DV), Eulerian two-phase model or complete two-fluid model of the free surface flow was developed to simulate water-sediment flow in a local scour hole. In the model, the complete forms of the vertical, two-dimensional, two-fluid Navier-Stokes equations were discretized using a finite volume scheme. This discretization was done based on a standard staggered grid system using a curvilinear network system in compliance with the bed boundaries and water level. At the beginning of the computational cycle, the equations governing the fluid phase were solved based on the two-step projection method with a pressure-correction technique. In the first step, the intermediate fluid velocities were obtained by solving different phases of the momentum equations of the fluid phase using the time-splitting technique. In the second step, pressure was obtained and fluid velocities were updated. In this step a simple discretization method was applied for decreasing the computational complexity. After obtaining all the fluid phase variables at a new time step, the sediment phase momentum equations were solved using the time-splitting technique and sediment velocities were obtained. Then, at the end of the computational cycle, the sediment phase mass equation was solved and the concentrations of both phases were updated. At last, the capacity of the model for simulating of the longitudinal fluid velocity and sediment concentration in a local scour hole was evaluated. Numerical results were found to be in good agreement with experimental data.  相似文献   

15.
Widely used numerical models of solute transport processes in subsurface aquifers are limited to nonlocally refined rectangular, or logically rectangular, structured grids. This presents an unsuitable option to efficient numerical simulations maintaining an acceptable level of accuracy. Optimal selection of locally refined cells for efficient solute transport models is challenging to the current generation of numerical models. We present a novel and relatively simple to implement algorithm addressing these shortcomings. This method operates in four steps involving travel times simulations, a grid coarsening stage followed by a selective local grid refinement based on a cell-wise indicator, and a final postprocessing step. The refinement index is the sum of weighted logarithmic distributions of scaled forward and backward travel times. We calculate representative flow and transport properties at the two scales of the composite grid with a flow-based upscaling technique. We present two test problems to demonstrate the performances of this new gridding algorithm. We obtain the most important speedups for composite grids generated with the highest indicator thresholds. When hydrodynamic dispersion effects increase, we obtain less important speedups. An important outcome of this work is that grid design depends on nature and strength of the underlying flow and solute transport processes. Therefore, we suggest developing solute transport workflows integrating this grid generation algorithm as an integral component to build comprehensive and efficient groundwater models.  相似文献   

16.
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.  相似文献   

17.
Taking the anisotropy of velocity and attenuation into account, we investigate the wavefield simulation of viscoacoustic waves in 3D vertical transversely isotropic attenuating media. The viscoacoustic wave equations with the decoupled amplitude attenuation and phase dispersion are derived from the fractional Laplacian operator and using the acoustic approximation. With respect to the spatially variable fractional Laplacian operator in the formulation, we develop an effective algorithm to realize the viscoacoustic wavefield extrapolation by using the arbitrary-order Taylor series expansion. Based on the approximation, the mixed-domain fractional Laplacian operators are decoupled from the wavenumbers and fractional orders. Thus, the viscoacoustic wave propagation can be conveniently implemented by using a generalized pseudospectral method. In addition, we perform the accuracy and efficiency analyses among first-, second- and third-order Taylor series expansion pseudospectral methods with different quality factors. Considering both the accuracy and computational cost, the second-order Taylor series expansion pseudospectral method can generally satisfy the requirements for most attenuating media. Numerical modelling examples not only illustrate that our decoupled viscoacoustic wave equations can effectively describe the attenuating property of the medium, but also demonstrate the accuracy and the high robustness of our proposed schemes.  相似文献   

18.
Two-dimensional (in the vertical plane) wind-induced flows in no-flow-through reservoirs are considered. A numerical algorithm in the flow function–vortex variables is proposed based on the equations of slow stratified flows in the Boussinesq and boundary layer approximations with variable coefficient of vertical turbulent exchange. An analytical solution is given for a simplified problem.  相似文献   

19.
Carbon dioxide injection into deep saline formations may induce large‐scale pressure increases and migration of native fluid. Local high‐conductivity features, such as improperly abandoned wells or conductive faults, could act as conduits for focused leakage of brine into shallow groundwater resources. Pressurized brine can also be pushed into overlying/underlying formations because of diffuse leakage through low‐permeability aquitards, which occur over large areas and may allow for effective pressure bleed‐off in the storage reservoirs. This study presents the application of a recently developed analytical solution for pressure buildup and leakage rates in a multilayered aquifer‐aquitard system with focused and diffuse brine leakage. The accuracy of this single‐phase analytical solution for estimating far‐field flow processes is verified by comparison with a numerical simulation study that considers the details of two‐phase flow. We then present several example applications for a hypothetical CO2 injection scenario (without consideration of two‐phase flow) to demonstrate that the new solution is an efficient tool for analyzing regional pressure buildup in a multilayered system, as well as for gaining insights into the leakage processes of flow through aquitards, leaky wells, and/or leaky faults. This solution may be particularly useful when a large number of calculations needs to be performed, that is, for uncertainty quantification, for parameter estimation, or for the optimization of pressure‐management schemes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号