首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
中条山前寒武纪涑水杂岩主要由西姚和寨子英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩、横岭关和北峪钙碱性花岗质岩石组成。SHRIMP锆石U-Pb年代学研究表明,西姚石英闪长质片麻岩~(207)Pb/~(206)Pb加权平均年龄为2536±8Ma,是新太古代的产物;西姚和寨子TTG片麻岩及横岭关和北峪钙碱性花岗质岩石岩浆锆石Hf同位素组成ε_(Hf)(t)全为正值,且在t-ε_(Hf)(t)图解上,落在2.6~3.1Ga地壳演化线范围内。北峪钙碱性花岗质岩石中三个继承锆石核的~(207)Pb/~(206)Pb加权平均年龄为2633±84Ma,其锆石ε_(Hf)(t)值为-2.0~ 5.6。前寒武纪涑水杂岩中花岗质岩石的SHRIMP锆石U-Pb年代学和锆石Hf同位素特征揭示它们最可能形成于新太古代到古元古代,岩浆主要来源于约2650Ma初生地壳的部分熔融,并有更古老的地壳物质的加入。  相似文献   

2.
东准噶尔琼河坝桑德乌兰斑岩铜钼矿区含矿花岗斑岩透长石、石英斑晶粒内破裂构造发育,锆石普遍发育具核内破裂构造或碎裂状的核。破碎的锆石核与透长石、石英斑晶可能形成于深部岩浆房。锆石U-Pb定年结果显示,破碎变形的锆石核年龄为442.2±3.5Ma,锆石环带的年龄为412.7±3.3Ma,前者代表破碎变形锆石的形成时间,后者代表斑岩侵位与结晶的时间。Hf同位素结果显示,破碎的有核锆石与其外环带具一致的εHf(t)初始值与tDM2模式年龄,它们可能为同一岩浆或成因相同的岩浆不同阶段结晶的产物。这意味着琼河坝地区在早古生代(至少在442Ma)就开始有弧岩浆活动。幔源特征的εHf(t)值(10.3~15.1)与较老的模式年龄(tDM2=469~761Ma)显示形成研究区花岗斑岩的岩浆可能源于晚元古代-奥陶纪玄武质地壳的部分熔融。  相似文献   

3.
河南商城县汤家坪花岗斑岩产于大别造山带北麓,岩体位于早白垩世达权店花岗岩体的南缘。岩体斑晶含量占10%左右,主要由钾长石、斜长石和石英组成,基质主要由钾长石、斜长石、石英和少量黑云母组成,副矿物主要为磁铁矿、赤铁矿、锆石。花岗斑岩中锆石U-Pb年龄为121.6±4.6Ma,为早白垩世中晚期。汤家坪花岗斑岩含白云母,无角闪石,具高硅(SiO272%)、高碱(Na2O+K2O7.4%)的特征,铝饱和指数(ACNK)为0.99~1.18,轻稀土富集、重稀土亏损(La/Yb)N=10.9~44.5,明显亏损Eu(δEu=0.40~0.58)、Sr、Ba、Nb等。P2O5与SiO2含量呈正相关关系、Pb与SiO2含量呈负相关关系、Y、Th随Rb升高而降低,属弱过铝质高分异S型花岗岩。汤家坪花岗斑岩εHf(t)(-17.6~-10.4)和εNd(t)(-15.5~-13.7)值均显示出壳源特征,tDM2(Hf)和tDM2(Nd)分别为1843~2281Ma和2034~2178Ma,反映汤家坪花岗斑岩来源于古老地壳物质的重熔,中等的初始Sr同位素指示源岩中可能有部分低成熟度地壳物质加入。结合稀土元素特征,认为汤家坪花岗斑岩源岩来源较深,主要源于下地壳物质。  相似文献   

4.
西藏雄村斑岩铜金矿集区火山-岩浆岩锆石Hf同位素组成   总被引:4,自引:0,他引:4  
黄勇  唐菊兴  张丽  郎兴海 《地质学报》2014,88(8):1528-1538
通过对西藏雄村斑岩铜金矿集区内各期次火山—岩浆岩开展锆石Hf同位素研究,结合岩浆锆石U-Pb年龄,可将矿集区内火山—岩浆岩划分为两组。第一组为早—中侏罗世火山—岩浆岩:包括富矿安山质凝灰岩、成矿早期角闪石英闪长玢岩、成矿期石英闪长斑岩、含粗粒石英斑晶的石英闪长斑岩、以及穿插矿体的安山岩脉。第二组为始新世黑云母花岗闪长岩。第一组火山—岩浆岩锆石Hf同位素具有高度亏损的Hf同位素组成以及年轻的单阶段模式年龄,初始εHf(t)值分别为+13.76~+17.50、+12.24~+18.79、+14.39~+17.64、+12.50~+16.26、+10.66~+15.44之间,高度亏损的铪同位素组成表明该组火山-岩浆岩起源于亏损地幔的部分熔融。同时相对均一的Hf同位素组成暗示该组火山-岩浆岩并未经历过壳源物质的混染,即该组火山岩浆岩形成于洋壳之中的岛弧环境,火山-岩浆岩可能受控于深部同一岩浆房。第二组始新世黑云母花岗闪长岩初始εHf(t)值介于+5.75~+9.42之间,与冈底斯南缘同期岩体εHf(t)组成类似,起源于新生下地壳的部分熔融。  相似文献   

5.
广东省海丰县长埔锡多金属矿床位于粤东地区莲花山断裂带南西段,是一个中型锡多金属矿床。以与长埔锡多金属矿床矿化联系密切的石英斑岩为研究对象,首次对其进行了LA-ICP-MS锆石U-Pb定年以及锆石Hf同位素分析,获得其锆石U-Pb同位素加权平均年龄为(145.0±0.9)Ma,形成于早白垩世初;锆石Hf同位素特征显示其ε_(Hf)(t)为–7.95~–2.74,二阶段模式年龄(t_(DM2))为1371~1704 Ma,表明石英斑岩主要来源于中元古代古老地壳岩石的部分熔融,可能有少量地幔物质的加入。根据所得数据,结合区域构造演化,长埔锡多金属矿床石英斑岩可能形成于古太平洋板块向欧亚大陆俯冲作用有关的区域伸展动力学背景。  相似文献   

6.
内蒙古卓资县大苏计斑岩钼矿化与区内花岗质杂岩(石英斑岩、正长花岗斑岩和花岗斑岩)有密切的成因联系。LA-ICP-MS锆石U-Pb定年获得石英斑岩、正长花岗斑岩和花岗斑岩的结晶年龄分别为(234±3)Ma、(225±4)Ma和(220±4)Ma。杂岩体富硅(w(SiO_2)=70.37%~78.84%)、富碱(w(Na_2O+K_2O)=4.52%~8.77%),均属高钾钙碱性系列,普遍具有低的w(Na_2O)(0.15%~2.69%)和高的铝指数(ASI介于1.13~3.35)。稀土元素总量介于48.2×10~(-6)~527.0×10~(-6),石英斑岩稀土元素含量(48.2×10~(-6)~83.1×10~(-6))最低,正长花岗斑岩稀土元素含量(272.1×10~(-6)~527.0×10~(-6))最高,花岗斑岩稀土元素含量为162.5×10~(-6)~236.8×10~(-6);杂岩体δEu介于0.15~0.93之间,(La/Yb)N介于3.0~65.5,自正长花岗斑岩、花岗斑岩到石英斑岩,其Eu负异常逐渐増大,而(La/Yb)N逐渐减小。岩体普遍富集Rb、Th、U、K、Nd、Zr、Hf等,强烈亏损Sr、P、Ti等。正长花岗斑岩具有中等Ba、Ta、Nb亏损。石英斑岩和花岗斑岩均属于高分异花岗岩,而正长花岗斑岩属于I型花岗岩。主量、稀土和微量元素特征表明,杂岩体具有后碰撞或后造山花岗岩特征,形成于后碰撞或后造山环境。杂岩体锆石的Hf同位素显示,3种岩石的εHf(t)值介于-21.1~-8.1,二阶段模式年龄tDM2介于1775~2587 Ma。石英斑岩来自于古元古代地壳物质的部分熔融;正长花岗斑岩来自于古元古代晚期地壳物质的部分熔融;花岗斑岩也主要来自于古元古代地壳物质的部分熔融,但有少量新太古代地壳物质参与。  相似文献   

7.
对跃进山铜金矿床与矽卡岩型矿化有关的花岗闪长岩开展了LA-ICP-MS锆石U-Pb定年、锆石Lu-Hf同位素及岩石地球化学研究。结果表明,花岗闪长岩中26个锆石测点的~(206)Pb/~(238)U加权平均年龄为(118.96±0.77) Ma (MSWD=0.29);岩体中锆石的ε_(Hf)(t)值均为正值(+1.4~+3.2),且具有较年轻的Hf二阶段模式年龄(t_(DM2)=1.09~0.98 Ga);花岗闪长岩表现为富Al、高K和Na以及低Ti、P、Ca的钙碱性I型花岗岩地球化学特征,显示出轻稀土富集、重稀土元素亏损的稀土元素组成特征;样品锆石的ε_(Hf)(t)的值为偏低的正值,表明岩浆物质来源应为壳幔混源。结合岩石地球化学投图以及区域构造背景演化认为,花岗闪长岩和花岗斑岩均属于后碰撞-火山弧花岗岩,研究区的成矿成岩作用与太平洋板块强烈俯冲背景下的下岩石圈地幔拆沉有直接关系。  相似文献   

8.
姚家岭锌金多金属矿床位于铜陵矿集区东部,其形成与小青塘花岗闪长斑岩密切相关.然而,前人对该岩体的研究仍较少,为了深入认识姚家岭矿区的成矿作用,利用岩石地球化学的方法,对花岗闪长斑岩及锆石特征进行研究,结果表明:花岗闪长斑岩具有较高的SiO2,K2O/Na2O比值为0.68~1.02,为I型花岗岩,属于高钾钙碱性系列;锆石具有明显的环带结构,Th/U比值为0.34~1.20,为典型的岩浆锆石;锆石的206Pb/238 U加权平均年龄为141.0±1.7 Ma,说明花岗闪长斑岩形成于早白垩世;锆石的εHf(t)为-22.5~-9.2,Hf同位素两阶段模式年龄为1 639~2 620Ma,表明形成花岗闪长斑岩的岩浆是古元古代地壳岩石部分熔融的产物.此外,研究还表明,花岗闪长斑岩的结晶温度为558~739℃,成岩压力为50~250MPa.  相似文献   

9.
武宁县大岭上钨矿是赣西北大湖塘矿集区的重要组成部分,矿产类型以W为主,伴生有Cu、Mo等,成矿与燕山期花岗岩密切相关。本文重点研究了大岭上燕山期黑云母花岗斑岩锆石的U-Pb年龄及其Hf同位素特征,探讨了黑云母花岗斑岩的成岩年龄、物源性质及岩石与矿化的关系。本区黑云母花岗斑岩结晶锆石的加权平均年龄为130.4±1.6Ma,代表花岗斑岩的结晶年龄,该年龄与晚白垩世前后中国东部区域构造体制从挤压缩短变形向大陆伸展转换的时期(135Ma)基本一致。黑云母花岗斑岩结晶锆石ε_(Hf)(t)值为+3.38~+8.63,二阶段模式年龄为684~1020Ma,说明大岭上黑云母花岗斑岩源岩物质主要为1020Ma之前从地幔中脱离出来的壳源物质,但有地幔物质混染。该区黑云母花岗斑岩的成岩年龄比矿集区钨矿的成矿年龄小,说明该黑云母花岗斑岩与矿区钨矿在成因上无关。黑云母花岗斑岩在空间上与矿区铜矿化密切共生,成岩物源中混染的幔源物质可能Cu元素的携载者,这些Cu叠加在早期钨矿中。大岭上矿区的钨、铜矿化是不同矿化时间和不同矿化种类叠加的产物。  相似文献   

10.
对扬子陆块鄂东南地区古家山花岗闪长斑岩体进行了锆石CL显微结构分析和LA-(MC)-ICP-MS法U-Pb年龄测定及Lu-Hf同位素分析.结果表明该花岗闪长斑岩中的锆石为岩浆锆石,其晶体内部多包裹有经历变质重结晶程度不同的继承锆石.岩浆锆石206pb/238U加权平均年龄为145.4±1 Ma (MSWD=1.5),表明古家山岩体形成于晚侏罗世.岩浆锆石εHf(t)值为-4.33-17.41,Hf同位素两阶段模式年龄tDM2为1470 ~ 2294 Ma.继承锆石207Pb/206Pb年龄为1746 ~ 2959 Ma,以古元古代为主;εHf(t)值为-18.2~ 2.65,表明该地区存在太古宙-古元古代基底物质再循环.综合野外地质调查与岩石化学、锆石微区原位分析结果,古家山花岗闪长斑岩为壳源花岗岩,其源区为古元古代基底.对古家山花岗闪长斑岩体的研究表明鄂东南地区确切存在太古宙-元古代基底,为研究扬子陆块前寒武纪基底演化提供了新的信息和线索.  相似文献   

11.
Protolith zircon in high‐grade metagranitoids from Queensland, Australia, partially recrystallized during granulite‐grade metamorphism. We describe the zircon in detail using integrated cathodoluminescence, U–Pb isotope, trace element and electron backscatter diffraction pattern (EBSP) analyses. Primary igneous oscillatory zoning is partially modified or obliterated in areas within single crystals, but is well preserved in other areas. A variety of secondary internal structures are observed, with large areas of transgressive recrystallized zircon usually dominant. Associated with these areas are recrystallization margins, interpreted to be recrystallization fronts, that have conformable boundaries with transgressive recrystallized areas, but contrasting cathodoluminescence and trace element chemistry. Trace element analyses of primary and secondary structures provide compelling evidence for closed‐system solid‐state recrystallization. By this process, trace elements in the protolith zircon are purged during recrystallization and partitioned between the enriched recrystallization front and depleted recrystallized areas. However, recrystallization is not always efficient, often leaving a ‘memory’ of the protolith trace element and isotopic composition. This results in the measurement of ‘mixed’ U–Pb isotope ages. Nonetheless, the age of metamorphism has been determined. A correlation between apparent age and Th/U ratio is indicative of incomplete re‐setting by partial recrystallization. Recrystallization is shown to probably not significantly affect Lu–Hf ages. Recrystallization has been determined by textural and trace element analysis and EBSP data not to have proceeded by sub‐grain rotation or local dissolution/re‐precipitation, but probably by grain‐boundary migration and defect diffusion. The formation of metamorphic zircon by solid‐state recrystallization is probably common to high‐grade terranes worldwide. The recognition of this process of formation is essential for correct interpretation of zircon‐derived U–Pb ages and subsequent tectonic models.  相似文献   

12.
Crystallization thermometers for zircon and rutile   总被引:93,自引:20,他引:73  
Zircon and rutile are common accessory minerals whose essential structural constituents, Zr, Ti, and Si can replace one another to a limited extent. Here we present the combined results of high pressure–temperature experiments and analyses of natural zircons and rutile crystals that reveal systematic changes with temperature in the uptake of Ti in zircon and Zr in rutile. Detailed calibrations of the temperature dependencies are presented as two geothermometers—Ti content of zircon and Zr content of rutile—that may find wide application in crustal petrology. Synthetic zircons were crystallized in the presence of rutile at 1–2 GPa and 1,025–1,450°C from both silicate melts and hydrothermal solutions, and the resulting crystals were analyzed for Ti by electron microprobe (EMP). To augment and extend the experimental results, zircons hosted by five natural rocks of well-constrained but diverse origin (0.7–3 GPa; 580–1,070°C) were analyzed for Ti, in most cases by ion microprobe (IMP). The combined experimental and natural results define a log-linear dependence of equilibrium Ti content (expressed in ppm by weight) upon reciprocal temperature:
In a strategy similar to that used for zircon, rutile crystals were grown in the presence of zircon and quartz (or hydrous silicic melt) at 1–1.4 GPa and 675–1,450°C and analyzed for Zr by EMP. The experimental results were complemented by EMP analyses of rutile grains from six natural rocks of diverse origin spanning 0.35–3 GPa and 470–1,070°C. The concentration of Zr (ppm by weight) in the synthetic and natural rutiles also varies in log-linear fashion with T −1:
The zircon and rutile calibrations are consistent with one another across both the synthetic and natural samples, and are relatively insensitive to changes in pressure, particularly in the case of Ti in zircon. Applied to natural zircons and rutiles of unknown provenance and/or growth conditions, the thermometers have the potential to return temperatures with an estimated uncertainty of ±10 ° or better in the case of zircon and ±20° or better in the case of rutile over most of the temperature range of interest (∼400–1,000°C). Estimates of relative temperature or changes in temperature (e.g., from zoning profiles in a single mineral grain) made with these thermometers are subject to analytical uncertainty only, which can be better than ±5° depending on Ti or Zr concentration (i.e., temperature), and also upon the analytical instrument (e.g., IMP or EMP) and operating conditions.  相似文献   

13.
王璐  刘顺生 《地球学报》1994,15(Z1):226-231
本文阐述了颗粒锆石裂变径迹法及双带源逐层蒸发法的方法原理,对取自美国菲什(Fish)峡谷凝灰岩中的锆石裂变径迹年龄国际标准样及取自香港花岗岩中锆石的两种年龄结果进行了对比,并分析了它们年龄差异的原因,认为铅年龄代表锆石的结晶年龄,而裂变径迹表观年龄代表岩体的冷却年龄或最后一次热事件的年代。开展不同方法的对比研究,可以得到更多的信息,以期更好地探讨研究区的演化历史。  相似文献   

14.
Self-diffusion of Si under anhydrous conditions at 1 atm has been measured in natural zircon. The source of diffusant for experiments was a mixture of ZrO2 and 30Si-enriched SiO2 in 1:1 molar proportions; experiments were run in crimped Pt capsules in 1-atm furnaces. 30Si profiles were measured with both Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis with the resonant nuclear reaction 30Si(p,γ)31P. For Si diffusion normal to c over the temperature range 1,350–1,550°C, we obtain an Arrhenius relation D = 5.8 exp(−702 ± 54 kJ mol−1/RT) m2 s−1 for the NRA measurements, which agrees within uncertainty with an Arrhenius relation determined from the RBS measurements [62 exp(−738 ± 61 kJ mol−1/RT) m2 s−1]. Diffusion of Si parallel to c appears slightly faster, but agrees within experimental uncertainty at most temperatures with diffusivities for Si normal to c. Diffusion of Si in zircon is similar to that of Ti, but about an order of magnitude faster than diffusion of Hf and two orders of magnitude faster than diffusion of U and Th. Si diffusion is, however, many orders of magnitude slower than oxygen diffusion under both dry and hydrothermal conditions, with the difference increasing with decreasing temperature because of the larger activation energy for Si diffusion. If we consider Hf as a proxy for Zr, given its similar charge and size, we can rank the diffusivities of the major constituents in zircon as follows: D Zr < D Si << D O, dry < D O, ‘wet’.  相似文献   

15.
Li diffusion in zircon   总被引:2,自引:2,他引:0  
Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0–1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O–CO2 fluid were run in a piston–cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O–CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703–1.151°C at 1 atm for experiments run with the spodumene source:
D\textLi = 7.17 ×10 - 7 exp( - 275 ±11 \textkJmol - 1 /\textRT)\textm2 \texts - 1. D_{\text{Li}} = 7.17 \times 10^{ - 7} { \exp }( - 275 \pm 11\,{\text{kJmol}}^{ - 1} /{\text{RT}}){\text{m}}^{2} {\text{s}}^{ - 1}.  相似文献   

16.
Diffusion of helium has been characterized in natural zircon and apatite. Polished slabs of zircon and apatite, oriented either normal or parallel to c were implanted with 100 keV 3He at a dose of 5 × 1015 3 He/cm2. Diffusion experiments on implanted zircon and apatite were run in Pt capsules in 1-atm furnaces. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For diffusion in zircon we obtain the following Arrhenius relations:
Although activation energies for diffusion normal and parallel to c are comparable, there is marked diffusional anisotropy, with diffusion parallel to c nearly 2 orders of magnitude faster than transport normal to c. These diffusivities bracket the range of values determined for He diffusion in zircon in bulk-release experiments, although the role of anisotropy could not be directly evaluated in those measurements.In apatite, the following Arrhenius relation was obtained over the temperature range of 148–449 °C for diffusion normal to c:
In contrast to zircon, apatite shows little evidence of anisotropy. He diffusivities obtained in this study fall about an order of magnitude lower than diffusivities measured through bulk release of He through step-heating, and within an order of magnitude of determinations where ion implantation was used to introduce helium and He distributions measured with elastic recoil detection.Since the diffusion of He in zircon exhibits such pronounced anisotropy, helium diffusional loss and closure cannot be modeled with simple spherical geometries and the assumption of isotropic diffusion. A finite-element code (CYLMOD) has recently been created to simulate diffusion in cylindrical geometry with differing radial and axial diffusion coefficients. We present some applications of the code in evaluating helium lost from zircon grains as a function of grain size and length to diameter ratios, and consider the effects of “shape anisotropy”, where diffusion is isotropic (as in the case of apatite) but shapes of crystal grains or fragments may depart significantly from spherical geometry.  相似文献   

17.
The understanding of zircon crystallization, and of the Ti-in-zircon thermometer, has been enhanced by Ti concentration measurements of zircon from a small, concentrically zoned pluton in south-eastern Australia, the Boggy Plain zoned pluton (BPZP). Zircon crystals from rocks ranging in composition from gabbro to aplite were analysed for U–Th–Pb dating and Ti concentrations by an ion microprobe. Geochronological data yield a 206Pb/238U age of 417.2 ± 2.0 Ma (95% confidence) and demonstrate the presence of older inherited or xenocrystic zircon. Titanium measurements (n = 158) yield a mean Ti concentration of 11.7 ± 6.1 ppm (2SD) which corresponds to a mean crystallization temperature of 790°C for an α-TiO2 = 0.74 (estimated using mineral equilibria), or 760°C for an α-TiO2 = 1.0. Apparent zircon crystallization temperatures are similar in all intrusive phases, although the gabbro yields slightly higher values, indicating that crystallization occurred at the same temperature in all rock types. This finding is consistent with previous work on the BPZP, which indicates that liquid–crystal sorting (crystal fractionation) was the dominant control on chemical differentiation, and that late, differentiated liquids were similar in composition for all rock types. A simple forward model approximately predicts the range of crystallization temperatures, but not the shape of the distributions, due to sampling biases and complexities in the cooling and crystallization history of the pluton. The distribution of Ti concentrations has a mode at a higher Ti (higher temperature) than the sample set of Hadean detrital zircon. This is consistent with the hypothesis that the skew to low-T in the Hadean dataset is due to the presence of zircon that crystallized from wet anatectic melts.  相似文献   

18.
Hydrothermal zircon can be used to date fluid-infiltration events and water/rock interaction. At the Boggy Plain zoned pluton (BPZP), eastern Australia, hydrothermal zircon occurs with hydrothermal scheelite, molybdenite, thorite and rutile in incipiently altered aplite and monzogranite. The hydrothermal zircon is texturally distinct from magmatic zircon in the same rocks, occurring as murky-brown translucent 20–50 μm-thick mantles on magmatic cores and less commonly as individual crystals. The hydrothermal mantles are internally textureless in back-scatter electron and cathodoluminescence images whereas magmatic zircon is oscillatory zoned. The age of the hydrothermal zircon is indistinguishable from magmatic zircon, indicating precipitation from a fluid evolved from the magma during the final stages of crystallization. Despite indistinguishable U-Pb isotopic compositions, the trace-element compositions of the hydrothermal and magmatic zircon are distinct. Hydrothermal zircon is enriched in all measured trace-elements relative to magmatic zircon in the same rock, including V, Ti, Nb, Hf, Sc, Mn, U, Y, Th and the rare-earth elements (REE). Chondrite-normalized REE abundances form two distinct pattern groupings: type-1 (magmatic) patterns increase steeply from La to Lu and have Ce and Eu anomalies—these are patterns typical for unaltered magmatic zircon in continental crust rock types; type-2 (hydrothermal) patterns generally have higher abundances of the REE, flatter light-REE patterns [(Sm/La)N = 1.5–4.4 vs. 22–110 for magmatic zircon] and smaller Ce anomalies (Ce/Ce* = 1.8–3.5 vs. 32–49 for magmatic zircon). Type-2 patterns have also been described for hydrothermally-altered zircon from the Gabel Hamradom granite, Egypt, and a granitic dyke from the Acasta Gneiss Complex, Canada.Hadean (∼4.5–4.0 Ga) zircon from the Jack Hills, Western Australia, have variable normalized REE patterns. In particular, the oldest piece of Earth—zircon crystal W74/2-36 (dated at 4.4 Ga)—contains both type-1 and type-2 patterns on a 50 μm scale, a phenomenon not yet reported for unaltered magmatic zircon. In the context of documented magmatic and hydrothermal zircon compositions from constrained samples from the BPZP and the literature, the type-2 patterns in crystal W74/2-36 and other Jack Hills Hadean (JHH) zircon are interpreted as hydrothermally-altered magmatic compositions. An alteration scenario, constrained by isotope and trace-element data, as well as α-decay event calculations, involving fluid/zircon cation and oxygen isotope exchange within partially metamict zones and minor dissolution/reprecipitation, may have occurred episodically for some JHH zircon and at ∼4.27 Ga for zircon W74/2-36. Type-2 compositions in JHH zircon are interpreted to represent localized exchange with a light-REE-bearing, high δ18O (∼6–10‰ or higher) fluid. Thus, a complex explanation involving “permanent” liquid water oceans, large-scale water/rock interaction and plate tectonics in the very early Archean is not necessary as the zircon textures and compositions are simply explained by exchange between partially metamict zircon and a low volume ephemeral fluid.  相似文献   

19.
Ti site occupancy in zircon   总被引:1,自引:0,他引:1  
Ti site occupancy in zircon (ZrSiO4) is fundamental to thermobarometry because substitution mechanisms control Ti content-temperature relations. Here we describe the results of three independent methods used to demonstrate that Ti substitutes for Si and not Zr in zircon. Zircon grains were synthesized from oxide powders held in a Na2WO4 flux at 1 bar and 1300 °C. Zircon grains equilibrated with rutile + cristobalite show Ti contents (1201 ppm) nearly half that of zircon grains equilibrated with srilankite ((Ti,Zr)O2) + tetragonal zirconia (2640 ppm). The lower Ti content of zircon grains produced at silica-saturated conditions indicates that Ti substitution predominately occurs on the Si site. Moreover, the higher Ti contents of silica-saturated experiments at 1 bar (1201 ppm), relative to those at 1 GPa (457 ppm, Ferry and Watson, 2007), indicates a substantial pressure effect on Ti solubility in zircon. Measured Ti K-α edge X-ray Absorption Near Edge Structure (XANES) spectra of synthetic zircon grains show energies and normalized intensities akin to those seen among tetrahedrally coordinated Ti-bearing standard minerals, strongly suggesting that Ti occupies the Si site. Density functional theory (DFT) calculations confirm that Ti substitution is most likely to occur on the Si site and predict a Ti-O bond length of 1.797 Å (compared to an average of 2.160 Å for substitution on the Zr site), in excellent agreement with X-ray Absorption Fine Structure (EXAFS) spectra of experimentally grown zircon grains which indicate a value of 1.76(1) Å. The software FEFF 8.4 was used to simulate XANES spectra from the defect structures determined by DFT for Ti substituting on both the Si and Zr sites. The predicted spectrum for Ti on the Si site reproduces all the key features of the experimental zircon spectra, whereas Ti on the Zr site is markedly different. All applied methods confirm that Ti substitutes for Si in zircon. Consequently, the Ti content of zircon at a given pressure is not only a function of temperature, but will increase with decreasing silica activity. Because elements that activate or quench cathodoluminescence (CL) in zircon are incorporated into the Zr site, a decoupling of CL from Ti contents - incorporated on the Si site in zircon is expected. This hypothesis has been verified by a systematic CL-trace element study of natural and experimental zircon.  相似文献   

20.
锆石是U-Pb计时的首选对象,对于地质历史复杂的变质岩地区,如大别碰撞造山带的年代学研究,具有不可替代的重要性。变质岩中锆石经历了Pb的扩散丢失作用;晶格损伤导致的蜕晶化作用;增生-混合作用和重结晶作用。这些过程对锆石计时的准确性和有效性带来不同程度的影响。为了使测定的年龄有确定的地质意义,在进行锆石U-Pb定年前,必需对锆石进行成因矿物学和矿物内部结构研究,特别是阴极荧光和背散射电子成像研究,通过内部结构特征确定锆石成因过程。在化学U-Pb法定年时注意普通铅校正和^204Pb测定值对年龄的影响,尽量选择单一成因锆石。特别强调在大别造山带年代学中引入锆石微区离子探针定年技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号