首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modular Optoelectronic Scanner (MOS-B) spectrometer data over parts of Northern India was evaluated for wheat crop monitoring involving (a) sub pixel wheat fractional area estimation using spectral unmixing approach and (b) growth assessment by red edge shift at different phenological stages. Red shift of 10 nm was observed between crown root initiation stage to flowering stage. Wheat fraction estimates using linear spectral unmixing on Feb. 13, 1999 acquisition of MOS-B data had high correlation (0.82) with estimates from Wide Field Sensor (WiFS) data acquired on same date by IRS-P3 platform. It was observed that five bands (4,5,8,12,13 MOS-B bands) are sufficient for signature separability of major land cover classes viz. wheat, urban, wasteland, and water based on purely spectral separability criterion using Transformed Divergence (T.D.) approach. Higher number of bands saturated the T.D. values. In contrast, performance of sub pixel fractional area estimation using unmixing decreased drastically for eight bands (4,5,6,7,8,9,12,13 MOS-B bands) chosen from optimal band selection criteria in comparison to full set of 13 bands. The relative deviation between area estimated from Wifs and MOS-B increased from 1.72 percent when all thirteen bands were used in unmixing to 26.10 percent for the above eight bands.  相似文献   

2.
3.
The Canadian satellite RADARSAT launched in November 1995 acquires C-band HH polarisation Synthetic Aperture Radar (SAR) data in various incident angles and spatial resolutions. In this study, the Standard Beam S7 SAR data with 45°–49° incidence angle has been used to discriminate rice and potato crops grown in the Gangetic plains of West Bengal state. Four-date data acquired in the 24-day repeat cycle between January 2 and March 15, 1997 was used to study the temporal backscatter characteristics of these crops in relation to the growth stages. Two, three and four-date data were used to classify the crops. The results show that the backscatter was the lowest during puddling of rice fields and increased as the crop growth progressed. The backscatter during this period changed from −18 dB to −8 dB. This temporal behaviour was similar to that observed in case of ERS-SAR data. The classification accuracy of rice areas was 94% using four-date data. Two-date data, one corresponding to pre-field preparation and the other corresponding to transplantation stage, resulted in 92% accuracy. The last observation is of particular interest as one may estimate the crop area as early as within 20–30 days of transplantation. Such an early estimate is not feasible using optical remote sensing data or ERS-SAR data. The backscatter of potato crop varied from −9 dB to −6 dB during the growth phase and showed large variations during early vegetative stage. Two-date data, one acquired during 40–45 days of planting and another at maturing stage, resulted in 93% classification accuracy for potato. All other combinations of two-date data resulted in less than 90% classification accuracy for potato.  相似文献   

4.
Integrating the Red Edge channel in satellite sensors is valuable for plant species discrimination. Sentinel-2 MSI and Rapid Eye are some of the new generation satellite sensors that are characterized by finer spatial and spectral resolution, including the red edge band. The aim of this study was to evaluate the potential of the red edge band of Sentinel-2 and Rapid Eye, for mapping festuca C3 grass using discriminant analysis and maximum likelihood classification algorithms. Spectral bands, vegetation indices and spectral bands plus vegetation indices were analysed. Results show that the integration of the red edge band improved the festuca C3 grass mapping accuracy by 5.95 and 4.76% for Sentinel-2 and Rapid Eye when the red edge bands were included and excluded in the analysis, respectively. The results demonstrate that the use of sensors with strategically positioned red edge bands, could offer information that is critical for the sustainable rangeland management.  相似文献   

5.
Aboveground biomass of sugar beet influences tuber growth and sugar accumulation. Thus, accurate, rapid, and non-destructive technique of biomass estimation is important to optimize the crop management practices to attain the required aboveground biomass to support high tuber yields and optimal sugar content. The current research aimed to evaluate the performance of hyperspectral indices and band depth analysis, to remotely assess the aboveground biomass in sugar beet. The biomass and hyperspectral reflectance were collected at different growth stages in experimental and farmers’ fields. The model development was based on sugar beet plants sampled at various times during the growing period subject to seven nitrogen rates. The results showed that accuracy of biomass estimation was greater when using vegetation indices involving red edge bands (680–740 nm) as compared to that using the red light-based indices. Four types of optimized band depth information (band depth, band depth ratio, normalized band depth index, and band depth normalized to band area) involving the red edge further increased the accuracy of biomass estimation. This study demonstrated as the sugar beet biomass increased towards later growing period, biomass estimation using red light-based vegetation indices were less accurate as compared to that using band depth analysis in the vicinity of the red edge.  相似文献   

6.
This paper reports a study on multi-temporal polarized response of wheat crop from spaceborne ADEOS-POLDER sensor over a homogeneous wheat region of Punjab, India. Both the polarized as well as total reflectance of wheat were observed at different scattering angles for two spectral bands i.e. 670 nm and 865 nm during crop growth from November to April in rabi 1996-97 season. Results show that sun-target-viewing geometry plays an important role in polarization property. The top of atmosphere (TOA) polarized reflectance is found to decrease exponentially with increasing scattering angle. Polarized reflectance of crop was found to be an order of magnitude smaller in comparison to the total reflectance. An attempt was also made to model the observed polarized behavior over an agricultural area using a theoretical simplified crop reflectance model and accounting for atmospheric molecular (Rayleigh) contribution in the single scattering approximation. It was found that there was a decrease in the polarized reflectance at the grain filling (heading) stage of wheat crop. This is in accordance with ground- based observations and can be due to the reduction in the specular component of the reflected light during post-heading stage of the crop.  相似文献   

7.
Maize crop was sown at weekly intervals on six dates in a randomized replicated trial under nonlimiting moisture conditions. The different dates of sowing represent different growth stages in the same given environment. Spectral data were collected using a portable radiometer at different wavelengths, ranging form visible to infrared on two different dates. The spectral reflectance data in the red and infrared region were analysed for their sensitivity to leaf area index and leaf dry biomass. During active crop growth period significant correlations existed between leaf area index and ratio of infrared to red as well as the normalized differences. Similar relationships were also observed between dry biomass and spectral data. However, these relationships were found to be valid upto the crop growth stage when the leaf area index has reached its maximum, corresponding to flowering. Beyond this stage, the spectral reflectances were found to be not related to LAI. The relsults suggest the possibility of obtaining crop phenological information from the spectral response data.  相似文献   

8.
在不同的养分供应状况下,对水稻在几个生育期的荧光光谱特征的研究表明:氮素供应的减少会引起水稻叶片荧光光谱中蓝绿波段峰的强度在有效分蘖期时降低,无效分蘖期始升高,并使红波段峰的强度和特征峰之间的强度比值(如440nm/550nm)在各生育期均有所降低;利用水稻叶片荧光光谱特征的变化监测其养分供应状况是可能的;监测波段以400—800nm为宜,监测时期应为分蘖盛期一孕穗期。  相似文献   

9.
This paper assesses the capability of hyperspectral remote sensing to detect hydrocarbon leakages in pipelines using vegetation status as an indicator of contamination. A field experiment in real scale and in tropical weather was conducted in which Brachiaria brizantha H.S. pasture plants were grown over soils contaminated with small volumes of liquid hydrocarbons (HCs). The contaminations involved volumes of hydrocarbons that ranged between 2 L and 12.7 L of gasoline and diesel per m3 of soil, which were applied to the crop parcels over the course of 30 days. The leaf and canopy reflectance spectra of contaminated and control plants were acquired within 350–2500 nm wavelengths. The leaf and canopy reflectance spectra were mathematically transformed by means of first derivative (FD) and continuum removal (CR) techniques. Using principal component analysis (PCA), the spectral measurements could be grouped into either two or three contamination groups. Wavelengths in the red edge were found to contain the largest spectral differences between plants at distinct, evolving contamination stages. Wavelengths centred on water absorption bands were also important to differentiating contaminated from healthy plants. The red edge position of contaminated plants, calculated on the basis of FD spectra, shifted substantially to shorter wavelengths with increasing contamination, whereas non-contaminated plants displayed a red shift (in leaf spectra) or small blue shift (in canopy spectra). At leaf scale, contaminated plants were differentiated from healthy plants between 550–750 nm, 1380–1550 nm, 1850–2000 nm and 2006–2196 nm. At canopy scale, differences were substantial between 470–518 nm, 550–750 nm, 910–1081 nm, 1116–1284 nm, 1736–1786 nm, 2006–2196 nm and 2222–2378 nm. The results of this study suggests that remote sensing of B. brizantha H.S. at both leaf and canopy scales can be used as an indicator of gasoline and diesel contaminations for the detection of small leakages in pipelines.  相似文献   

10.
Penman–Monteith method adapted to satellite data was used for the estimation of wheat crop evapotranspiration during the entire growth period using satellite data together with ground meteorological measurements. The IRS-1D/IRS-P6 LISS-III sensor data at 23.5 m spatial resolution for path 096 and row 059 covering the study area were used to derive, albedo, normalized difference vegetation index, leaf area index and crop height and then to estimate wheat crop evapotranspiration referred to as actual evapotranspiration (ETact). The ETact varied from 0.86 to 3.41 mm/day during the crop growth period. These values are on an average 16.40 % lower than wheat crop potential evapotranspiration (ETc) estimated as product of reference crop evapotranspiration estimated by Penman–Monteith method and lysimetric crop coefficient (Kc). The deviation of ETact from ETc is significant, when both the values were compared with t test for paired two sample means. Though the observations on ETact were taken from well maintained unstressed experimental plot of 120 × 120 m size, there was significant deviation. This deviation could be attributed to, the satellite images representing the actual crop evapotranspiration as function crop canopy biophysical parameters, condition of the crop stand, climatic and soil conditions and the microclimate variation over area of one hectare. However, Penman–Monteith method represents a flat rate of specific growth stage of the crop.  相似文献   

11.
卢霞  刘少峰  郑礼全 《测绘科学》2007,32(2):111-113
研究矿区植被重金属胁迫,植被反射光谱测量必不可少。用成像光谱仪野外测试江西德兴铜矿区典型植被的冠层反射波谱曲线,利用导数光谱评价植被“红边”位置。分析得知,植被红边“蓝移”,最大“蓝移”达11nm。根据红边位置与叶绿素含量的正相关关系,并结合铜矿区地质、地貌特点以及开采情况,初步断定铜矿区植被主要受到重金属胁迫而且胁迫程度与植被冠层重金属含量也呈正相关关系。这可作为高光谱分辨率遥感技术在矿区植被修复方面的决策支持和参考依据。  相似文献   

12.
The accurate and timely estimates of crop physiological growth stages are essential for efficient crop management and precise modeling of agricultural systems. Satellite remote sensing has been widely used to retrieve vegetation phenology metrics at local to global scales. However, most of these phenology metrics (e.g., green-up) are different from crop growth stages (e.g., emergence) used in crop management and modeling. As such, an integrated framework referred to as PhenoCrop was developed to: 1) establish a connection between remote sensing-derived phenology metrics and key crop growth stages based on Wang and Engle plant phenology model and 2) use fused MODIS-Landsat 30 m 8-day reflectance data generated using Kalman Filter-based data fusion technique to produce onset dates of key growth stages of corn (Zea mays L.) and soybeans (Glycine max L.) at 30 m spatial resolution. In this paper, we described the PhenoCrop framework, and tested its performance for the State of Nebraska for 2012–2016 by comparison to observations of estimated key growth stages at four experimental sites, and state-level statistical data from Crop Progress Reports (CPRs) published by the United States Department of Agriculture’s (USDA) National Agricultural Statistical Services (NASS). In addition, to evaluate the suitability of using coarse or high spatial resolution satellite imagery, fused MODIS-Landsat-based estimates were compared with those produced using EOS MODIS 250 m (MOD9Q1) reflectance data.The PhenoCrop estimates captured the typical spatial trends of gradual delay in the progression of the growing season from southeast to northwest Nebraska. Also inter-annual differences due to factors such as weather fluctuations and change in management strategies (e.g., early season in 2012) were evident in the estimates. Validation results revealed that average root mean square error (RMSE) of the state-level estimates of corn and soybean growth stages ranged from 1.10 to 4.20 days and from 3.81 to 7.89 days, respectively, while pixel level estimates had a RMSE ranging from 3.72 to 8.51 days for corn and 4.76–9.51 days for soybean growth stages. Although MODIS 250 m based estimates showed similar general spatial patterns observed in the fused MODIS-Landsat based estimates, the accuracy and ability to capture field scale variations was improved with fused MODIS-Landsat data. Overall, results showed the ability of PhenoCrop framework to provide reliable estimates of crop growth stages that can be highly useful in crop modeling and crop management during the growing season.  相似文献   

13.
利用NOAA NDVI数据集监测冬小麦生育期的研究   总被引:34,自引:2,他引:34  
探索了利用NDVI研究作物生育期的方法,对黄淮海冬麦区的返青期、抽穗期、成熟期进行了估测,并利用地面实际观测资料进行了验证。结果表明,NDVI数据对大范围农作物生育期监测是可行的。冬小麦遥感反青期由南到北依次推迟,符合春季绿波由南到北推移规律。对冬小麦遥感生育期年际变化分析表明,黄淮海平原返青期变化相对较大,而抽穗期和成熟期变化较小。根据历年月平均温度与返青期分析,冬小麦返青日期与2月份平均温度密切相关。对于局部地区,利用5d合成1km分辨率数据,且按农业生态分区分别制定生育期判别标准,估测效果将更好。  相似文献   

14.
Ground based remote sensing experiments using multispectral radiometer were condueted during December 1992 to March 1993, at horticultural field of Mahatma Phule Krishi Vidyapeeth, located in Pune, over banana, grapes, brinjal and tomato crops for studying the spectral response at different growth stages and vigour. The spectral characteristics and the various vegetative indices of diseased and healthy plants are discussed in this paper. Besides its significance in ground based remote sensing, these studies may be helpful for decision making in the area of condition assessment of crops through satellite remote sensing, as the spectral bands of the radiometer used in this experiment are similar to those of IRS and Landsat satellites. Moreover, the growth profiles of brinjal and banana crops can be useful in the area of crop and vegetable discrimination.  相似文献   

15.
本文利用卫星测高、GRACE与温盐数据监测2003-2014年红海海平面变化,并分析了蒸发降水以及亚丁湾-红海质量交换对红海质量变化的影响。红海地区单一的温盐数据存在覆盖不全或质量不佳的问题,综合CORA、SODA与ORAS4温盐数据估算结果得到平均比容海平面变化,以改善比容信号的精度。针对GRACE数据处理过程中截断与空间平滑滤波引起的泄漏误差,提出改进尺度因子纠正泄漏误差,利用卫星测高数据进行模拟实验验证了改进尺度因子的有效性。利用传统尺度因子和改进尺度因子反演的红海质量变化周年振幅分别为16.1±1.3 cm和20.5±1.7 cm,利用卫星测高和温盐数据估算的质量变化周年振幅为20.2±1.0 cm,表明改进尺度因子可有效减小泄漏误差的影响,改善GRACE模型反演红海质量变化的精度。卫星测高、GRACE卫星重力数据以及平均温盐数据具有较好的一致性,联合GRACE和温盐数据估算的红海综合海平面变化周年振幅为16.6±1.7 cm,与卫星测高估算的总海平面变化周年振幅(16.2±0.9 cm)基本一致,表明多源数据可构成完整的红海海平面监测手段。相比于降水-蒸发作用,红海质量变化受红海与亚丁湾的海水质量交换的影响更为显著,其主导了红海质量的季节性变化。  相似文献   

16.
冬小麦是我国重要的粮食作物之一,准确获取冬小麦种植面积具有重要的现实意义。为探究高分六号卫星影像进行冬小麦遥感监测的可行性和精确性,本文选取甘肃省崆峒区为研究区,运用红边波段+监督分类中的支持向量机法,提取了2019年崆峒区冬小麦种植面积,并利用混淆矩阵对分类结果进行精度验证。结果表明:提取崆峒区冬小麦种植面积为15045 hm 2,与实际种植面积相比,误差率为1.02%;该模型能有效地提取崆峒区冬小麦,总体精度为98.88%,Kappa系数为0.97;红边波段能有效地提取干扰地物,提取精度比直接使用监督分类高7.88个百分点;GF6影像在提取冬小麦种植面积上具有明显优势。  相似文献   

17.
Possibility of utilizing the red and infrared spectral information for assessing status of vegetation cover and consequential crop phenological information are discussed. The experiment was conducted in a potential agricultural area around Mandya town of Karnataka State and airborne spectral information was obtained through modular multispectral scanner from a height of 1000 meters above the ground level. The spectral information of red (0.66–0.70 urn) and infrared (0.77–0.86 urn) bands was extracted with the aid of an interactive computer system : the multispectral data analysis system. Based on the spectral information, the data was analysed and interpreted with the support of ground information. Crop fields without vegetation were observed to have infrared/red ratio in the range of 0.70 to 0.97 and also it was possible to distinguish wet and dry paddy field. Crop fields covered with vegetation exhibited higher infrared/red ratio depending on the nature of crop growth. For instance, rice crop exhibited spectral ratio of 0.78 at the time of planting, 3.52 at the time of maximum vegetation growth and 2.04 during the maturation phase. In case of sugarcane crop, the increase and decrease in spectral ratio were gradual because of its longer duration. From infrared and red band information it was possible to distinguish crop species based on rate of change of vegetation cover which corresponded with the change in spectral ratios. The temporal information expressed in two dimensional space for red and infrared band also enabled clearly to distinguish between rice and sugarcane.  相似文献   

18.
Crop monitoring using remotely sensed image data provides valuable input for a large variety of applications in environmental and agricultural research. However, method development for discrimination between spectrally highly similar crop species remains a challenge in remote sensing. Calculation of vegetation indices is a frequently applied option to amplify the most distinctive parts of a spectrum. Since no vegetation index exist, that is universally best-performing, a method is presented that finds an index that is optimized for the classification of a specific satellite data set to separate two cereal crop types. The η2 (eta-squared) measure of association – presented as novel spectral separability indicator – was used for the evaluation of the numerous tested indices. The approach is first applied on a RapidEye satellite image for the separation of winter wheat and winter barley in a Central German test site. The determined optimized index allows a more accurate classification (97%) than several well-established vegetation indices like NDVI and EVI (<87%). Furthermore, the approach was applied on a RapidEye multi-spectral image time series covering the years 2010–2014. The optimized index for the spectral separation of winter barley and winter wheat for each acquisition date was calculated and its ability to distinct the two classes was assessed. The results indicate that the calculated optimized indices perform better than the standard indices for most seasonal parts of the time series. The red edge spectral region proved to be of high significance for crop classification. Additionally, a time frame of best spectral separability of wheat and barley could be detected in early to mid-summer.  相似文献   

19.
The spectroradiometric retrieved reflectance of a local crop, namely, beans (Phaseolus vulgaris), is directly compared to the reflectance of Landsat 5TM and 7ETM+ atmospherically corrected and uncorrected satellite images. Also, vegetation indices from the same satellite images—atmospherically corrected and uncorrected—are compared with the corresponding vegetation indices produced from field measurements using a spectroradiometer. Vegetation Indices are vital in the estimation of crop evapotransiration under standard conditions (ETc) because they are used in stochastic or empirical models for describing crop canopy parameters such as the Leaf Area Index (LAI) or crop height. ETc is finally determined using the FAO Penman-Monteith method adapted to satellite data, and is used to examine the impact of atmospheric effects. Regarding the reflectance comparison, the main problem was observed in Band 4 of Landsat 5TM and 7ETM+, where the difference, for uncorrected images, was more than 20% and statistically significant. Results regarding ETc show that omission or ineffective atmospheric corrections in Landsat 5TM,/7ETM+ satellite images always results in a water deficit when estimating crop water demand. Diminished estimated crop water requirements can result in a reduction in output or, if critical, crop failure. The paper seeks to illustrate the importance of removing atmospheric effects from satellite images designated for hydrological purposes.  相似文献   

20.
The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species.The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal–Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths – wavezones – that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT.Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号