首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Fractional green vegetation cover (FVC) is a useful indicator for monitoring grassland status. Satellite imagery with coarse spatial but high temporal resolutions has been preferred to monitor seasonal and inter-annual FVC dynamics in wide geographic area such as Mongolian steppe. However, the coarse spatial resolution can cause a certain uncertainty in the satellite-based FVC estimation, which calls attention to develop a robust statistical test for the relationship between field FVC and satellite-derived vegetation indices. In the arid and semi-arid Mongolian steppe, nadir pointing digital camera images (DCI) were collected and used to produce a FVC dataset to support the evaluation of satellite-based FVC retrievals. An optimal DCI processing method was determined with respect to three color spaces (RGB, HIS, L*a*b*) and six green pixel classification algorithms, from which a country-wide dataset of DCI-FVC was produced and used for evaluating the accuracy of satellite-based FVC estimates from MODIS vegetation indices. We applied three empirical and three semi-empirical MODIS-FVC retrieval models. DCI data were collected from 96 sites across the Mongolian steppe from 2012 to 2014. The histogram algorithm using the hue (H) value of the HIS color space was the optimal DCI method (r2 = 0.94, percent root-mean-square-error (RMSE) = 7.1%). For MODIS-FVC retrievals, semi-empirical Baret model was the best-performing model with the highest r2 (0.69) and the lowest RMSE (49.7%), while the lowest MB (+1.1%) was found for the regression model with normalized difference vegetation index (NDVI). The high RMSE (>50% or so) is an issue requiring further enhancement of satellite-based FVC retrievals accounting for key plant and soil parameters relevant to the Mongolian steppe and for scale mismatch between sampling and MODIS data.  相似文献   

2.
张猛  曾永年 《遥感学报》2018,22(1):143-152
植被净初级生产力NPP(Net Primary Production)遥感估算与分析,有赖于高时空分辨率的遥感数据,但目前中高分辨率的遥感数据受卫星回访周期及天气的影响,在中国南方地区难以获取连续时间序列的数据,从而影响了高精度的区域植被净初级生产力的遥感估算。为此,提出一种基于多源遥感数据时空融合技术与CASA模型估算高时空分辨率NPP的方法。首先,利用多源遥感数据,即Landsat8 OLI数据与MODIS13Q1数据,采用遥感数据时空融合方法,获得了时间序列的Landsat8 OLI融合数据;然后,基于Landsat8 OLI时空融合数据,并采用CASA模型,以长株潭城市群核心区为例,进行区域植被NPP的遥感估算。研究结果表明,基于时间序列Landsat融合数据估算的30m分辨率的NPP具有良好的空间细节信息,且估算值与实测值的相关系数达0.825,与实测NPP数据保持了较好的一致性。  相似文献   

3.
In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.  相似文献   

4.
We used geographic datasets and field measurements to examine the mechanisms that affect soil carbon (SC) storage for 65 grazed and non-grazed pastures in southern interior grasslands of British Columbia, Canada. Stepwise linear regression (SR) modeling was compared with random forest (RF) modeling. Models produced with SR performed better than those produced using RF models (r2 = 0.56–0.77 AIC = 0.16–0.30 for SR models; r2 = 0.38–0.53 and AIC = 0.18–0.30 for RF models). The factors most significant when predicting SC were elevation, precipitation, and the normalized difference vegetation index (NDVI). NDVI was evaluated at two scales using: (1) the MOD 13Q1 (250 m/16-day resolution) NDVI data product from the moderate resolution imaging spectro-radiometer (MODIS) (NDVIMODIS), and (2) a handheld multispectral radiometer (MSR, 1 m resolution) (NDVIMSR) in order to understand the potential for increasing model accuracy by increasing the spatial resolution of the gridded geographic datasets. When NDVIMSR data were used to predict SC, the percentage of the variance explained by the model was greater than for models that relied on NDVIMODIS data (r2 = 0.68 for SC for non-grazed systems, modeled with SR based on NDVIMODIS data; r2 = 0.77 for SC for non-grazed systems, modeled with SR based on NDVIMSR data). The outcomes of this study provide the groundwork for effective monitoring of SC using geographic datasets to enable a carbon offset program for the ranching industry.  相似文献   

5.
This paper provides an approach for rapid and accurate estimation of built-up areas on a per pixel-basis using a integration of two coarse spatial resolution remote sensing data namely DMSP-OLS and MODIS NDVI. The DMSP-OLS data due to its free availability, high temporal resolution and wide swath was used for regional level mapping of built-up areas. However, due to its low radiometric resolution, the built-up areas cannot be estimated accurately from the DMSP-OLS data. In present study, the DMSP-OLS data was combined with MODIS NDVI data to develop an Human Settlement Index (HSI) image, which estimated the fraction of built-up area on a per pixel basis. The resultant HSI image conveys more information than both the individual datasets. These temporal HSI images were then used for monitoring urban growth in Indo-Gangetic plains during the 2001–2007 time period. Thus, the present research can be very useful for regional level monitoring of built-up areas from coarse resolution data within limited time and minimal cost.  相似文献   

6.
Soil erosion rates in alpine regions are related to high spatial variability complicating assessment of risk and damages. A crucial parameter triggering soil erosion that can be derived from satellite imagery is fractional vegetation cover (FVC). The objective of this study is to assess the applicability of normalized differenced vegetation index (NDVI), linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) in estimating abundance of vegetation cover in alpine terrain. To account for the small scale heterogeneity of the alpine landscape we used high resolved multispectral QuickBird imagery (pixel resolution = 2.4 m) of a site in the Urseren Valley, Central Swiss Alps (67 km2). A supervised land-cover classification was applied (total accuracy 93.3%) prior to the analysis in order to stratify the image. The regression between ground truth FVC assessment and NDVI as well as MTMF-derived vegetation abundance was significant (r2 = 0.64, r2 = 0.71, respectively). Best results were achieved for LSU (r2 = 0.85). For both spectral unmixing approaches failed to estimate bare soil abundance (r2 = 0.39 for LSU, r2 = 0.28 for MTMF) due to the high spectral variability of bare soil at the study site and the low spectral resolution of the QuickBird imagery. The LSU-derived FVC map successfully identified erosion features (e.g. landslides) and areas prone to soil erosion. FVC represents an important but often neglected parameter for soil erosion risk assessment in alpine grasslands.  相似文献   

7.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

8.
Soil organic carbon (SOC) is an important aspect of soil quality and plays an imperative role in soil productivity in the agriculture ecosystems. The present study was applied to estimate the SOC stock using space-borne satellite data (Landsat 4–5 Thematic Mapper [TM]) and ground verification in the Medinipur Block, Paschim Medinipur District and West Bengal in India. In total, 50 soil samples were collected randomly from the region according to field surveys using a hand-held Global Positioning System (GPS) unit to estimate the surface SOC concentrations in the laboratory. Bare soil index (BSI) and normalized difference vegetation ndex (NDVI) were explored from TM data. The satellite data-derived indices were used to estimate spatial distribution of SOC using multivariate regression model. The regression analysis was performed to determine the relationship between SOC and spectral indices (NDVI and BSI) and compared the observed SOC (field measure) to predict SOC (estimated from satellite images). Goodness fit test was performed to determine the significance of the relationship between observed and predicted SOC at p ≤ 0.05 level. The results of regression analysis between observed SOC and NDVI values showed significant relationship (R2 = 0.54; p < 0.0075). A significant statistical relationship (r = ?0.72) was also observed between SOC and BSI. Finally, our model showed nearly 71% of the variance of SOC distribution could be explained by SOC and NDVI values. The information from this study has advanced our understanding of the ongoing ecological development that affects SOC dissemination and might be valuable for effective soil management.  相似文献   

9.
刘良云 《遥感学报》2014,18(6):1158-1168
由于地表空间异质性的普遍存在,遥感反演模型的非线性必然会导致不同分辨率观测的遥感结果不一致,从而产生遥感产品尺度效应。本文研究了遥感产品尺度效应概念、模拟方法和定量计算模型,并利用锡林浩特草原研究区的实测数据,对尺度效应模型和方法进行了定量计算与验证分析。首先,基于不同升尺度方法与多尺度遥感成像机理之间的机理联系,通过“先反演再平均”与“先平均再反演”之间的差异,可计算“高”分辨率与“低”分辨率之间的遥感产品尺度差异。其次,分别以红光、近红外两波段反射率和归一化植被指数(NDVI)为自变量,对叶面积指数(LAI)非线性遥感模型进行泰勒展开,研究了模型非线性、遥感数据空间异质性对LAI遥感产品尺度差异的影响,发现高阶项可忽略,利用二阶导数项和遥感数据方差项可定量计算遥感产品尺度差异,经过二阶导数项纠正后的尺度差异相对偏差从5.6%分别降低到0.78%和1.45%。最后,分析了LAI遥感产品尺度效应的特征规律,得出以下结论:随着植被覆盖的增大,同等遥感空间异质性的LAI遥感产品尺度差异越大,且红光波段比近红外波段的尺度差异敏感性高近2个数量级;对于绝大部分陆地植被区域,存在“低分辨率低估”尺度效应,且遥感产品尺度差异的主导要素为LAI模型非线性,NDVI变量自身非线性对尺度效应贡献占23.5%;对于湿地类植被与水体混合情形,NDVI变量非线性的贡献为主导贡献,出现“低分辨率高估”尺度效应,必须利用红光、近红外两波段的二阶导数项非线性尺度差异,才能解释这一类型的LAI遥感产品尺度效应。本文建立了具有一定普适意义的遥感产品尺度效应定量模拟与尺度纠正方法,对推动定量遥感的尺度问题研究有一定参考价值。  相似文献   

10.
A method to correlate crop production in Zambia to the yearly evolution of the Normalized Difference Vegetation Index (NDVI) is proposed. The method consists of the analysis of remote sensing data together with meteorological data and simulated crop production to obtain indicators of crop production. The accuracy of these indicators is assessed with statistical data.

The main objective was to assess whether the NDVI‐time series extracted from NOAA‐AVHRR‐images , having a pixel resolution of 73 km may give reliable information on crop production in Zambia where agricultural areas cover just 1% of the land area.

The mean NDVI‐value of several pixels, e.g. for one province or other administrative units, relates to the dominant type of vegetation in the area under consideration.

It is shown that the 7.3 km NDVI‐data give reliable indications on crop production in Zambia, when small areas (200–450 km2 large ) are considered where agricultural land use is intensive. This implies that preliminary analysis is required to localize the agricultural areas. This has been done by means of high resolution satellite images i.e. LANDSAT‐MultiSpectral Scanner.

Consequently, the NDVI‐time series of the ‘agricultural ‘ pixels are used to calculate crop growth indicators which can be applied to assess the crop production.  相似文献   

11.
现有像元二分模型MODIS植被覆盖度模型因其形式简单、适用性较强的特点被广泛应用于区域植被覆盖度(FVC)的估算。然而,研究表明在沙漠和低植被覆盖的西部干旱区,从250 m的影像上很难精准地获取NDVIveg(全植被覆盖植被指数)和NDVIsoil(全裸土区植被指数)参数。利用常用的直方图累计法获取模型所需参数NDVIveg和NDVIsoil,估算结果存在普遍高估现象。为此,本文首先引入同期获取的GF-2号卫星数据,从GF-2号影像上提取植被覆盖像元;然后,利用Pixel Aggregate方法重采样至250 m分辨率,获取250 m空间分辨率下纯植被和纯裸土像元;最后,将纯植被和纯裸土像元各自空间位置相对应的MODIS NDVI数据最大值作为模型所需NDVIveg和NDVIsoil参数,实现研究区内植被覆盖度的估算。试验通过与线性回归法、多项式回归法和直方图累计像元二分模型法估算结果进行精度对比,结果表明:利用GF-2影像辅助的像元二分模型,精准地获取了低植被覆盖区NDVIveg和NDVIsoil模型参数,提高了干旱区植被覆盖度的估算精度,并有效地抑制了受稀疏植被影响NDVI在干旱区普遍偏高问题导致的FVC高估的现象。  相似文献   

12.
This research explored the integrated use of Landsat Thematic Mapper (TM) and radar (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) data for mapping impervious surface distribution to examine the roles of radar data with different spatial resolutions and wavelengths. The wavelet-merging technique was used to merge TM and radar data to generate a new dataset. A constrained least-squares solution was used to unmix TM multispectral data and multisensor fusion images to four fraction images (high-albedo, low-albedo, vegetation, and soil). The impervious surface image was then extracted from the high-albedo and low-albedo fraction images. QuickBird imagery was used to develop an impervious surface image for use as reference data to evaluate the results from TM and fusion images. This research indicated that increasing spatial resolution by multisensor fusion improved spatial patterns of impervious surface distribution, but cannot significantly improve the statistical area accuracy. This research also indicated that the fusion image with 10-m spatial resolution was suitable for mapping impervious surface spatial distribution, but TM multispectral image with 30 m was too coarse in a complex urban–rural landscape. On the other hand, this research showed that no significant difference in improving impervious surface mapping performance by using either PALSAR L-band or RADARSAT C-band data with the same spatial resolution when they were used for multi-sensor fusion with the wavelet-based method.  相似文献   

13.
研究增强型植被指数基于Landsat-8数据反演土壤水分的可行性及适用性,分析研究区土壤水分总体分布,提高该地区应对干旱灾害的能力。基于温度植被干旱指数方法,以淮河流域上游地区作为研究区,基于2017年2月的Landsat-8影像,分别计算了地表温度、归一化植被指数、增强型植被指数,基于TVDI构建了两种土壤水分反演模型。研究比较了:1) EVI在TM数据中的应用特点;2)研究区土壤含水率的空间分布特征;3)两种模型反演结果的差异。结果表明:1)基于TM数据计算的EVI总体明显低于NDVI,但不同时间段的结果并不总是低于NDVI;2)基于EVI的模型结果精度低于基于NDVI模型结果。3)两种模型结果与植被覆盖度、地表温度的关系均为负相关,其中,基于EVI的模型结果与地表温度的负相关程度极高,即基于EVI的模型结果受植被影响较小,受温度影响程度高。  相似文献   

14.
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.  相似文献   

15.
一种高时空分辨率NDVI数据集构建方法-STAVFM   总被引:1,自引:1,他引:0  
ETM NDVI可以用来在30m的尺度上开展植被的监测,然而在Landsat卫星16天的重访周期和云污染等因素的影响下,常常会在相当长的一段时间内无法获取有效的ETM NDVI数据,给这一尺度下的植被动态监测带来了一定困难。相比之下,MODIS虽然在空间上只有250m分辨率的NDVI产品,却可以每天进行相同区域的监测。针对ETM空间分辨率高和MODIS时间分辨率高的特点,本研究选择实验区,基于对STARFM方法的改进,构建不同时空分辨率NDVI的时空融合模型-STAVFM,使用该模型对ETM NDVI与MODIS NDVI融合,构建了高时空分辨率NDVI数据集。研究结果表明,通过MODIS NDVI时间变化信息与ETM NDVI空间差异信息的有机结合,实现缺失高空间分辨率NDVI的有效预测(3景预测NDVI与实际NDVI的相关系数分别达到了0.82、0.90和0.91),从而构建高时空分辨率NDVI数据集。所构建的高时空分辨率NDVI数据集在时间上保留了高时间分辨率数据的时间变化趋势,空间上又反映了高空间分辨率数据的空间细节差异。  相似文献   

16.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

17.
The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but typically fail to express such differences as gradients. Present interpretation techniques still make insufficient use of freely available spatial-temporal Earth Observation (EO) data that allow detection of existing land cover gradients. This study explores the use of hyper-temporal NDVI imagery to detect and delineate land cover gradients analyzing the temporal behavior of NDVI values. MODIS-Terra MVC-images (250 m, 16-day) of Crete, Greece, from February 2000 to July 2009 are used. The analysis approach uses an ISODATA unsupervised classification in combination with a Hierarchical Clustering Analysis (HCA). Clustering of class-specific temporal NDVI profiles through HCA resulted in the identification of gradients in landcover vegetation growth patterns. The detected gradients were arranged in a relational diagram, and mapped. Three groups of NDVI-classes were evaluated by correlating their class-specific annual average NDVI values with the field data (tree, shrub, grass, bare soil, stone, litter fraction covers). Multiple regression analysis showed that within each NDVI group, the fraction cover data were linearly related with the NDVI data, while NDVI groups were significantly different with respect to tree cover (adj. R2 = 0.96), shrub cover (adj. R2 = 0.83), grass cover (adj. R2 = 0.71), bare soil (adj. R2 = 0.88), stone cover (adj. R2 = 0.83) and litter cover (adj. R2 = 0.69) fractions. Similarly, the mean Sorenson dissimilarity values were found high and significant at confidence interval of 95% in all pairs of three NDVI groups. The study demonstrates that hyper-temporal NDVI imagery can successfully detect and map land cover gradients. The results may improve land cover assessment and aid in agricultural and ecological studies.  相似文献   

18.
A spectral linear-mixing model using Landsat ETM+ imagery was undertaken to estimate fraction images of green vegetation, soil and shade in an indigenous land area in the state of Mato Grosso in the central-western region of Brazil. The fraction images were used to classify different types of land use and vegetation cover. The fraction images were classified by the following two methods: (a) application of a segmentation based on the region-growing technique; and (b) grouping of the regions segmented using the per-region unsupervised classifier named ISOSEG. Adopting a 75% threshold, ISOSEG generated 44 clusters that were grouped into eight land-use and vegetation-cover classes. The mapping achieved an average accuracy of 83%, showing that the methodology is efficient in mapping areas of great land-use and vegetation-cover diversity, such as that found in the Brazilian cerrado (savanna).  相似文献   

19.
Soil moisture (SM) content is one of the most important environmental variables in relation to land surface climatology, hydrology, and ecology. Long-term SM data-sets on a regional scale provide reasonable information about climate change and global warming specific regions. The aim of this research work is to develop an integrated methodology for SM of kastanozems soils using multispectral satellite data. The study area is Tuv (48°40′30″N and 106°15′55″E) province in the forest steppe zones in Mongolia. In addition to this, land surface temperature (LST) and normalized difference vegetation index (NDVI) from Landsat satellite images were integrated for the assessment. Furthermore, we used a digital elevation model (DEM) from ASTER satellite image with 30-m resolution. Aspect and slope maps were derived from this DEM. The soil moisture index (SMI) was obtained using spectral information from Landsat satellite data. We used regression analysis to develop the model. The model shows how SMI from satellite depends on LST, NDVI, DEM, Slope, and Aspect in the agricultural area. The results of the model were correlated with the ground SM data in Tuv province. The results indicate that there is a good agreement between output SM and SM of ground truth for agricultural area. Further research is focused on moisture mapping for different natural zones in Mongolia. The innovative part of this research is to estimate SM using drivers which are vegetation, land surface temperature, elevation, aspect, and slope in the forested steppe area. This integrative methodology can be applied for different regions with forest and desert steppe zones.  相似文献   

20.
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV  20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号