首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 183 毫秒
1.
珠江口磨刀门枯季水文特征及河口动力过程   总被引:15,自引:0,他引:15       下载免费PDF全文
根据磨刀门2003年12月9~15日的大、中潮同步水文观测资料,分析了磨刀门枯季的潮汐、潮流、余流、悬移质含沙量、盐度等水文特征,并对枯季河口动力过程,如咸淡水混合、河口射流等进行了初步研究。在枯季由于径流较弱,潮流成为主要动力。表层由于受径流和风的影响余流基本上沿河道走向向下游,中层以下有稳定的向上的余流存在。枯季磨刀门含沙量较小(<1 kg/m3),盐度在平面上和垂向上均有一定变化。磨刀门枯季咸淡水混合类型为缓混合型,各站盐度分层参数均在0.01~1.0。从实测流速的分布情况来看,河口下层有反向的水流,存在明显的因密度差而形成的密度环流。根据枯季实测资料计算所得的密度弗劳德数,磨刀门枯季以浮力射流为主。  相似文献   

2.
长江口斜压诊断模式三维流场数值模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
建立了σ坐标系下长江口斜压诊断模式三维流场数学模型,采用k-kl二方程紊流闭合模型求解垂向涡粘系数,计算域内恒定、非均匀盐度场反映了计算域密度斜压效应。验证结果表明,斜压诊断模式的模拟成果较切合实际。模型成功复演了长江口水域由往复流向旋转流过渡的流场特性;潮波从四条汊道传入后在分汊口附近相遇形成多个会潮点,其位置随着径流的大小、潮汐的强弱、汊道的形态等因素而变化。  相似文献   

3.
刘诚  梁燕  王其松  彭石 《水科学进展》2017,28(5):770-779
磨刀门已由"径流型"向"径流-波浪型"河口转变,波浪已是该河口主要动力之一,但波浪对河口洪季水流及泄洪的影响缺少研究。在2-D潮流数学模型中添加随潮位实时变化的波浪辐射应力,建立波浪潮流耦合数学模型;波浪求解采用缓坡方程,背景水深由潮流模型实时提供,可通过比较考虑和未考虑波浪影响的河口流场来分析波浪对泄洪的影响。在年均常浪作用下,磨刀门河口洪季涨落潮阶段均有明显的波生环流结构。由于波浪作用方向向陆,波生流减弱了浅滩区的向海余流,增大了浅滩向陆余流;受浅滩向海余流减弱影响,河口动力自调整后形成归槽水流,促使深槽内向海余流增大。波浪有顶托河口泄洪之势,可改变滩槽泄洪分配比例;年均常浪的波高较小,其对潮流及泄洪的影响区域限制在浅水区,故对泄洪的负面影响有限。  相似文献   

4.
冰盖下冰花浓度分布的数值模拟   总被引:1,自引:1,他引:0  
杨伟伟  曹征  王军 《冰川冻土》2012,34(3):597-602
封冻河道内的冰花分布规律对冰期水文及环境分析有着重要的意义. 视冰花为连续介质, 基于多相流理论和欧拉-欧拉模型方法, 建立了河渠垂向二维标准k-ε紊流数值模型. 在不同的水流流速、 冰花颗粒尺寸、 上游来冰量条件下, 对冰盖下冰花浓度场进行了模拟分析, 得到了冰盖下冰花分布特征. 结果表明: 水流流速越大, 冰花沿垂向分布范围越大, 冰花浓度分布曲线斜率越大, 冰花浓度沿垂向的均匀性越大, 同时浓度最大值越小; 冰花颗粒尺寸越大, 冰花沿垂向分布范围越大, 冰花浓度分布曲线斜率越大; 上游来冰量越大, 冰花沿垂向分布范围越大, 在同一水深其浓度值也越大, 冰花浓度沿垂向分布的均匀性越大.  相似文献   

5.
非均质岸滩广泛分布于冲积河流中,其侧蚀过程沿垂向具有分层特点。基于全三维水沙模型及河岸侧蚀坍塌力学模式,提出动态网格跟踪技术,构建了非均质岸滩侧蚀沿垂向差异的三维动力学模拟方法。以连续弯道概化水槽为例,模拟分析了非均质河岸侧蚀过程中三维水流结构的响应特征。研究结果表明:坡脚冲刷后,底部主流向凹岸偏移,在已有弯道环流的基础上,于坡脚处出现一反向次生流;上部粘性土层坍塌后,崩塌土体堆积于坡脚处,上部主流明显左偏,下部次生流消失;随着坡脚堆积体的冲刷搬运,下部主流进一步向凹岸偏移;如此循环,主流不断向凹岸偏移,致使岸坡持续崩退、河道摆动。  相似文献   

6.
非均质岸滩广泛分布于冲积河流中,其侧蚀过程沿垂向具有分层特点。基于全三维水沙模型及河岸侧蚀坍塌力学模式,提出动态网格跟踪技术,构建了非均质岸滩侧蚀沿垂向差异的三维动力学模拟方法。以连续弯道概化水槽为例,模拟分析了非均质河岸侧蚀过程中三维水流结构的响应特征。研究结果表明:坡脚冲刷后,底部主流向凹岸偏移,在已有弯道环流的基础上,于坡脚处出现一反向次生流;上部粘性土层坍塌后,崩塌土体堆积于坡脚处,上部主流明显左偏,下部次生流消失;随着坡脚堆积体的冲刷搬运,下部主流进一步向凹岸偏移;如此循环,主流不断向凹岸偏移,致使岸坡持续崩退、河道摆动。  相似文献   

7.
莱州湾悬沙输运机制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈斌  刘健  高飞 《水科学进展》2015,26(6):857-866
基于2012年实测的潮流、含沙量及表层沉积物数据及资料等,分析了潮流、余流、潮流底应力及底质类型对含沙量变化的影响,并运用物质通量分析方法,探讨了莱州湾悬浮泥沙的输运机制.研究结果表明:研究海域受半日潮控制呈往复流特征,涨、落潮期间近底含沙量与流速及潮流底应力显著相关,存在明显的再悬浮现象,含沙量呈现潮周期变化特征;底质类型与含沙量大小密切相关,细颗粒物质更容易发生悬浮;平流输运与潮泵效应是莱州湾海域的悬沙输运的主要动力因素.  相似文献   

8.
陈启刚  钟强 《水科学进展》2017,28(4):579-587
明渠紊流中随水流迁移的涡结构在传质过程中具有重要作用。为观测涡结构在整个生存期内的运动过程,将两套高频粒子图像测速系统的测量范围沿水流方向拼接,实现流场的大范围测量。将上述方法用于测量摩阻雷诺数为490~870的明渠紊流的纵垂面流场,并结合涡结构跟踪算法,得到了涡的生存时间、运动速度、位移及强度变化等参数。分析表明,涡结构的水平运动与水流同步,但整体有向水面抬升的趋势,在低雷诺数条件下,最大生存时间约10倍涡周转时间,最大垂向位移约0.4倍水深;随着雷诺数的增大,涡结构的量纲一运动速度未发生明显变化,但极限强度和强度变化速率均增大,且极限强度的增加幅度相对较小,使得涡结构的生存时间缩短,纵、垂向位移相应减小。研究结果揭示了生存时间是影响涡结构运动规律的关键变量,初步得到了涡结构运动规律随水流条件的变化趋势。  相似文献   

9.
采用大涡数值模拟方法建立了波流环境中垂向圆管射流三维物质输运数学模型,在此基础上分析了波流共同作用下射流运动和稀释过程,并探讨了波浪对射流三维时均浓度特征的影响。数模结果与实测数据的对比表明,该模型能够正确复演波流环境中射流速度和浓度沿水深分布的规律。引入了射流的三维浓度特征指标,即断面最小稀释度及其垂向位置和断面可视范围面积,发现随着波高或波周期的增大,波流环境中射流的断面可视范围面积逐渐增加,这说明波浪对射流的稀释起到一定的促进作用。  相似文献   

10.
梁世川  徐明  王磊  秦覃  封丽华 《地下水》2013,(6):53-54,125
GMS(Groundwater Modeling System)是国际上流行的地下水模拟软件,且与ARCGIS属性数据有很好的兼容性,GMS3DGrids中的MODFLOW模块下的barrier边界条件可用于模拟地下含水层系统中薄层、垂向和低透水性、对地下水水平流具有阻碍作用的物体。在盖孜河研究区,近南北向分布的断层对地下水流具有控制阻碍作用,应用障碍边界处理断层,对研究区进行地下水流数值模拟,计算结果表明,地下水流受断层的影响很明显,应用barrier障碍边界对断层进行处理,模型中能够较好地反映出断层的这种影响作用。  相似文献   

11.
A tidally-induced frontal system regularly develops in a small area off Newport News Point in the lower James River, one of the tributaries of the Chesapeake Bay. In conjunction with the front, a strong counter-clockwise eddy develops on the shoals flanking the northern side of the channel as the result of tidal interaction with the local bathymetry and estuarine stratification. A three-dimensional hydrodynamic model was applied to simulate the eddy evolution and front development, and to investigate time-varying circulation and material transport over a spring-neap tidal cycle. The model results show that variation of tidal range, together with periodic stratification-destratification of the estuary, has a significant impact on the residual circulation of the lower James River. The net surface water circulation, which takes the form of a counterclockwise eddy on the Hampton Flats, is stronger during neap tide than during spring tide. Strong stratification and weak flood current during neap tide results in a dominant ebb flow at the surface, which delays flooding within the channel and advances the phase lead of flood tide on shoals adjacent to the channel, thus increasing both period and intensity of the eddy. Front development in the area off Newport News Point provides a linkage between shoal surface water and channel bottom water, producing a strong net upriver bottom transport. The existence of the vertical transport mechanism was independently demonstrated through tracer experiments. The impact of the dynamics on larval dispersion was investigated through a series of model simulations of the movement of shellfish larvae over multiple tidal cycles following their release at selected bottom sites. These results show that eddy-induced horizontal circulation and vertical transport associated with the frontal system are important mechanisms for the retention of larval organisms in the James River.  相似文献   

12.
胡四友  李春辉  潘锡山  王扬 《水文》2014,34(4):61-67
利用临时潮位站琅矶山、钓浜、下大陈岛的潮位观测资料和7条垂线大、中潮全潮潮流观测资料,分析了黄礁作业区附近海域潮汐、潮流特性。结果表明:测区海域潮汐类型属于正规半日潮,潮流类型属于非正规半日潮流性质。1#~5#垂线为往复流,6#、7#垂线为旋转流,该海域潮波为驻波性质。  相似文献   

13.
采用大凌河实测长系列河道径流及水下地形等数据, 通过建立水动力数值模型, 综合考虑潮流和河道径流的影响, 对大凌河口的潮流进行模拟, 探讨大凌河口及辽东湾北部海域水动力过程的主要特征. 结果表明: 大凌河口附近海域的海流以潮流为主, 具有明显的往复性质. 潮流总的运动趋势是, 涨潮主流向为北东, 落潮主流向为南西. 大潮流速大于小潮流速, 涨潮流历时与落潮流历时几乎相当. 最大涨潮流速约为0.52 m/s, 最大落潮流速约为0.4 m/s, 潮流涨落平均潮流强度的分布大体和该海域等深线相适应.  相似文献   

14.
A local, one-dimensional, depth-dependent model is used in conjunction with a one-dimensional, longitudinal, hydrodynamical model to examine the mechanisms affecting yertical profiles of longitudinal residual current in the macrotidal (tidal range typically exceeds 4 m during spring tides), partly-mixed Tamar Estuary. Residual currents are simulated at a deep (15m) station in the lower reaches, which possesses a small tidal amplitude to depth ratio and a nonzero salinity throughout the tidal cycle, as well as at a shallow station in the upper reaches, which varies in depth from 1 m at low water, when salinity is zero, to 5 m at high water. A slow, up-estuary current dominates the residual circulation just beneath the high-water level at the deeper station. Further down the water column a down-estuary residual current develops which is the near-surface component of a two-layer gravitational circulation. The up-estuary component of this gravitational circulation occurs deeper in the column and extends to the bed at the deep station, whereas at the shallow station it is eventually dominated by a down-estuary current in the bottom 1 m. Simulated residual currents are fairly insensitive to estuary-bed slope and to observed depth variations in longitudinal density gradient. Residual current profiles of the observed form can only be generated by a longitudinal density gradient. The reduction in vertical eddy viscosity by water column stability due to stratification is an essential requirement for producing a strong gravitational circulation of the observed magnitude. Stratification at the shallow station is much higher during the ebb than during the flood and this asymmetry enhances the gravitational circulation in the upper reaches. The formation of residual flows at both stations is illustrated by showing time-series data over a tidal cycle for the simulated current profiles.  相似文献   

15.
Periodic frontogenesis in a region of freshwater influence   总被引:1,自引:0,他引:1  
Observations are presented from a series of three conductivity-temperature-depth (CTD) surveys of the salinity and temperature structure of Liverpool Bay, a region that is strongly influenced by the input of fresh water from the rivers of northwest England. The surveys demonstrate the development, seaward movement, and eventual decay of a haline front. The frontogenesis is driven by the relaxation of a freshwater-induced horizontal density gradient following the decrease in tidal range at neap tides. It results in the area of Liverpool Bay being stratified for a period of 8 d before the increase in tidal mixing as the spring tide approaches returns the region to its initial vertically mixed state. In Liverpool Bay this process usually repeats on the spring-neap cycle, though strong wind-mixing may prevent the frontogenesis and subsequent stratification. Analysis with a 1-dimensional numerical model suggests that relaxation of an initially nonlinear horizontal density field, creating the front, is triggered by the stability produced by tidal straining of the water column during the ebb half-cycle. The reduction in tidal mixing energy approaching neap tide does not lead to frontogenesis without this initial stability. Such a regular stratification signal will have a marked effect on the local environment. The periodic frontogenesis will act as a tidal pump, moving buoyant substances in the water column offshore, while the onshore residual currents lower in the water column will more deeper dissolved substances inshore. The cycling of stability on the springneap time scale is considerably faster than the seasonal cycle of thermal stratification in the shelf seas, but is similar in creating the conditions required for phytoplankton blooms. Conditions favorable for enhanced primary production may therefore occur frequently in such regions of freshwater influence.  相似文献   

16.
《China Geology》2019,2(4):522-529
In recent years, development activities have had a significant impact on the environment of the Jiaozhou Bay, China. To ensure the sustainable economic and social development of the Jiaozhou Bay area, it is necessary to strengthen corresponding control measures. The important prerequisite is to properly understand the environmental conditions laws of natural change, especially the dynamic processes of sediment and the characteristics of landform evolution. Based on the data of continuous observation at 6 stations in Jiaozhou Bay for 25 hours, the Hydrodynamic Eutrophication Model (HEM-3D) was used to simulate the sediment erosion and deposition. The results show that the maximum suspended sediment concentration in the sea area of Jiaozhou Bay is about 40 mg/L, which appears in the northwestern area of the bay top and the Cangkou watercourse area, and the low concentration is located in the area of the central Jiaozhou Bay towards the bay mouth. The suspended sediment is 6–10 mg/L. Affected by a decrease in seawater material, the direction of the prevailing current in the Jiaozhou Bay area is different from that of the sediment transport. The velocity of the flood current is higher than that of the ebb current. However, during flood tide, the flux of resuspended seafloor sediment outside and at the mouth of the bay is limited and cannot contribute significantly to the suspended sediment in the bay. During ebb tide, the resuspended sediment at the shallow-water bay head and the east and west sides spreads toward the bay mouth with the ebb current, although it extends beyond the bay through the bay mouth. The research results can provide scientific support for the Jiaozhou Bay project construction and environmental protection.  相似文献   

17.
An analysis of the vertical structure of nontidal longitudinal currents and salinity in a reach of the lower Potomac River Estuary suggests that values for vertical eddy viscosity and eddy diffusivity scale with water depth H, tidal current amplitude U and bulk Richardson number according to conventional empirical formulas. However, the constant which relates the vertical eddy coefficients under conditions of neutral stability to UH is found to be an order of magnitude less than that expected for tidal conditions. Analyses also suggest that the degree of enhancement of longitudinal dispersion by the shear effect associated with the nontidal currents is a strong function of bulk Richardson number.  相似文献   

18.
The buoyant discharge from Delaware Bay forms two separate branches of residual outflow near the bay mouth, one along each shore. Upon exiting the bay, the branch along the Delaware shore turns right to form the southward flowing Delaware coastal current along the inner continental shelf off the Delaware, Maryland, and Virginia coasts. CTD and thermosalinograph, data collected at the mouth of Delaware Bay over two semidiurnal tidal cycles are used to examine the hydrographic distribution at the source region of the Delaware coastal current. In this region the buoyant source water of the coastal current, is largely detached from the shoreline and confined to the top 15 m of the water column over much of the tidal cycles. The core of the coastal current's source water, as defined by the point of salinity minimum, is located over the deep channel well offshore of the Delaware coast. The separation between this buoyant water and the more saline waters right along the Delaware coast and that in the central part of the bay mouth are marked by regions of high horizontal salinity gradients. The horizontal salinity gradients around the inshore and offshore boundaries of the source water of the coastal current are intensified during the flood tide, and clearly defined fronts (with a change of 3‰ over a distance of 150 m) are present at the offshore boundary near the end of the flood tide. The structure of the mean flow and the distribution of the brackish coastal current on the inner continental shelf contribute to the persistence of stratification in the source region off the Delaware shore throughout the ebb and flood tides. In contrast, the ebb-induced stratification in the region off the New Jersey shore is quickly destroyed with the onset of the flood current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号