首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对振荡器的五种噪声之间的关系作了介绍,并对相位时间信号的状态空间模型的基本理论作了描述.在此基础上导出了五种噪声的递推模拟方法.最后模拟了这五种噪声并分析了它们的功率谱.结果表明,功率谱符合这几种噪声的定义.  相似文献   

2.
提出了一种基于特征向量算法来估计Loran-C接收机天波延迟的信号处理新技术,为设计具有自适应调节最佳采样点的Loran-C接收机打下良好的基础.建立了基于频谱相除技术的信号模型,简要介绍了特征向量的谱估计算法.研究了此算法估计天波延迟的准确性,并与IFFT技术作了对比.仿真结果显示.特征向量算法比IFFT具有更高的分辨率和尖锐的波峰.最后,通过实测数据的实验验证了这些结论.  相似文献   

3.
文章研究了162个射电源,其中包括了47个BL Lacs ,21个galaxies ,94个平谱射电类星体( FSRQs ) ,这些源是通过Michigan大学的26m的射电望远镜观测的。大多数源都包含了3个波段的观测数据:4 .8GHz ,8GHz和14 .5GHz。文中计算了3个子类的平均的流量密度,并且得到了相应的谱指数(αwei) ,αBL=0 .08±0 .28 ,αGAL=-0 .91±0 .32 ,αFSRQ=-0 .14±0 .4。同时也讨论了这些源的射电性质,其中包含了谱指数,流量密度和红移之间的关系,流量密度和谱指数之间的关系。  相似文献   

4.
对全球定位系统(Global Positioning System,GPS)信号捕获中的延时相乘捕获算法的检测率进行了仿真分析.延时相乘捕获算法消除了多普勒频偏的影响,适用于高动态环境下信号的捕获.但算法的缺点是延时相乘操作增加了噪声量,从而降低了信噪比,影响检测性能.针对算法的缺点,通过理论计算与蒙特卡罗方法仿真,分析了算法中检测变量的噪声分布.从仿真结果看,检测变量的噪声符合高斯分布.根据噪声分布,计算了在不同信号载噪比(C/N0)条件下延时相乘捕获算法的检测率与虚检率的关系.通过减小噪声带宽和延长积分时间,可以提高算法的检测率.  相似文献   

5.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

6.
本文针对低纬子午环原方位传动系统中存在的振动问题,提出了新的解决方案,即采用振动较小的电机替代原电机.为此,我们对原单片机控制系统的硬件进行了扩展与修改,重新设计了单片机内的ASM控制程序.文中介绍了修改后的系统硬件结构与ASM控制程序.  相似文献   

7.
对隋唐五代时期的日食、月食记录进行了全面的搜集、勘误和统计分析.研究了这些记录的文献来源、时间分布、覆盖率和记录特征.这一时期记载了实际可见日食的65%和月食的28%.  相似文献   

8.
讨论了激光测距仪测距本领的限制因素,找出了诸多限制因素的内在联系,得出了影响测距能力的关键因素是目标的照明概率.在前人已有的对激光测距仪最佳发散角的选取方法基础上,对其进行了改进.新得到的方法在选取最佳发散角时具有快速、简洁和精确度高等特点,并利用多项式拟合对其进行了简化,使其可用于粗略估算.最后,利用数值模拟对新方法进行了验证分析.  相似文献   

9.
研究了在仅有并合时黑洞自旋的演化分布.利用了后牛顿近似处理并合后的角动量问题,采用蒙特卡洛方法模拟了不同条件下的并合影响.结果表明主并合不能使黑洞自旋分布稳定,而小并合可使黑洞自旋平稳地降低.当取并合质量比为幂指数形式时黑洞自旋分布可以稳定在-个小自旋占绝对份额的水平,同时,也讨论了射电强活动星系核和黑洞自旋在不同假设下的关系.最后计算并给出了射电噪度的分布情况.  相似文献   

10.
云量是影响天文台址质量最重要的因素之一,对夜间云量的检测和处理尤为重要.采用地面云量相机对全天云量进行监测,所拍摄的图像需要有效的方法进行处理以量化云量.夜间云量图像受月光的影响严重,因此将夜间的云量图像分为有月夜和无月夜两类进行处理.针对无月夜情况,给出了夜间云量的处理过程.对图像中的亮星进行定位和测光,确定星等差.以晴夜图像中亮星的星等差为参照,将星等差低于阈值条件的亮星概率作为晴夜的概率标准.选取了3类图像对该方法进行测试并确定云量,分析了阈值条件对结果的影响.最后,讨论了该方法的适用范围和不确定性.  相似文献   

11.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

12.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

13.
It is suggested that the overall early melting of the lunar surface is not necessary for the explanation of facts and that the structure of highlands is more complicated than a solidified anorthositic ‘plot’. The early heating of the interior of the Moon up to 1000K is really needed for the subsequent thermal history with the maximum melting 3.5 × 109 yr ago, to give the observed ages for mare basalts. This may be considered as an indication that the Moon during the accumulation retained a portion of its gravitational energy converted into heat, which may occur only at rapid processes. A rapid (t < 103 yr) accretion of the Moon from the circumterrestrial swarm of small particles would give necessary temperature, but it is not compatible with the characteristic time 108 yr of the replenishment of this swarm which is the same as the time-scale of the accumulation of the Earth. It is shown that there were conditions in the circumterrestial swarm for the formation at a first stage of a few large protomoons. Their number and position is evaluated from the simple formal laws of the growth of satellites in the vicinity of a planet. Such ‘systems’ of protomoons are compared with the observed multiple systems, and the conclusion is reached that there could have been not more than 2–3 large protomoons with the Earth. The tidal evolution of protomoon orbits was short not only for the present value of the tidal phase-lag but also for a considerably smaller value. The coalescence of protomoons into a single Moon had to occur before the formation of the observed relief on the Moon. If we accept the age 3.9 × 109 yr for the excavation of the Imbrium basin and ascribe the latter to the impact of an Earth satellite, this collision had to be roughly at 30R, whereR is the radius of the Earth, because the Moon at that time had to be somewhere at this distance. Therefore, the protomoons had to be orbiting inside 20–25R, and their coalescence had to occur more than 4.0x109 yr ago. The energy release at coalescence is equivalent to several hundred degrees and even 1000 K. The process is very rapid (of the order of one hour). Therefore, the model is valid for the initial conditions of the Moon.  相似文献   

14.
15.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

16.
17.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

18.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号