首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘宁  魏晓辉  王斌  董涛 《海洋科学》2020,44(9):146-153
针对基于MEMS加速度传感器的空投波浪浮标存在采样频率与测波精度低的问题,根据频域衰减积分算法,提出一种相应的波浪测量算法,为了验证该算法测波的准确性,开展了多功能水槽试验研究。该算法旨在将MEMS加速度传感器输出的加速度与姿态角转化为浮标运动的波形,首先将加速度与姿态角信号进行竖向处理获得竖直方向的加速度,再利用离散傅里叶变换将竖向加速度转化为频域内的加速度复数序列,然后引入控制函数减弱低频噪声,经过频域积分、离散傅里叶逆变换、时域积分获得竖直方向的位移,最后通过后处理得到最终的波形。多功能水槽试验采取10中不同波高和周期的工况,对比空投波浪测量浮标与波高仪的测量结果,试验结果表明,浮标的测量误差在10%以内,达到测波标准。  相似文献   

2.
可以连续进行波浪测量的仪器被通称为“自记波浪仪”。按其测量讯号的传输方式划分,可分为有线传输型自记波浪仪和无线传输型自记波浪仪两类。 使用无线传输型自记波浪仪进行海上波浪测量,具有便于取得大风天气下的波浪资料、可长时间(几天或几十天)在离岸较远的海上连续进行波浪测量和节省调查费用等优点。笔  相似文献   

3.
S.N. Londhe   《Ocean Engineering》2008,35(11-12):1080-1089
This paper presents soft computing approach for estimation of missing wave heights at a particular location on a real-time basis using wave heights at other locations. Six such buoy networks are developed in Eastern Gulf of Mexico using soft computing techniques of Artificial Neural Networks (ANN) and Genetic Programming (GP). Wave heights at five stations are used to estimate wave height at the sixth station. Though ANN is now an established tool in time series analysis, use of GP in the field of time series forecasting/analysis particularly in the area of Ocean Engineering is relatively new and needs to be explored further. Both ANN and GP approach perform well in terms of accuracy of estimation as evident from values of various statistical parameters employed. The GP models work better in case of extreme events. Results of both approaches are also compared with the performance of large-scale continuous wave modeling/forecasting system WAVEWATCH III. The models are also applied on real time basis for 3 months in the year 2007. A software is developed using evolved GP codes (C++) as back end with Visual Basic as the Front End tool for real-time application of wave estimation model.  相似文献   

4.
赵明  赵海涛  滕斌 《海洋学报》2005,27(3):90-96
提出了一种用于对不连续压力采样序列的傅立叶分析方法.此方法将周期函数展开成傅立叶级数,但在数值积分时取函数周期内有采样值的区间作为积分域,然后求解线性方程组得到傅立叶级数的系数值.为了检验本方法的有效性,利用此方法对解析函数进行了拟合,当一个周期内的取样时间大于1/2周期时,利用此方法能够得到满意的结果.利用实验方法研究了波浪作用下截断圆柱表面的压力分布.在波浪作用下静水面附近的测点在露出水面时没有压力值.利用所提出的傅立叶分析方法对略低于静水面位置的实测压力进行了分析,拟合结果与实测结果吻合很好,说明此方法在处理物理模型实验中间断采样得到的数据是有效的.利用数值方法对波浪压力进行了计算,并将一阶和二阶波压力的数值结果与实测值进行了比较.  相似文献   

5.
This paper presents a transfer function method (TFM) which can separate a regular wave field into incident and reflected waves based on the linear wave theory. The TFM uses specific transfer functions and corresponding convolution integrals to separate time series data measured in a combined partial standing wave system into incident and reflected waves. After this separation, estimation of the reflection coefficient becomes very easy. All manipulations have been performed in time domain. Furthermore, this method does not involve the calculation of wave heights and/or phase differences. The present method is demonstrated through numerical sample and physical model experiments carried out in a wave flume. Compared with other methods, the TFM gives much better estimates of the incident wave heights for physical model experiments in this study.  相似文献   

6.
对梳状沉箱防波堤的波浪反射特征进行研究。在对梳状沉箱防波堤非线性消耗波能机理分析基础上,采用阻抗分析方法,导出一组所有参数都是事先知道的、完全封闭的波反射系数公式。  相似文献   

7.
讨论了一种在一般闭区间上连续的无穷级数展开方法,针对测量和地图学中常用纬度间正反解等一类问题,给出了一种傅里叶级数解算方法,并进行了相应的理论分析和计算。基于Mathematica计算机代数系统,推导出常用纬度与大地纬度间正反解的级数展开式,表明运用傅里叶级数解法可以简单表示和计算一类复杂奇函数的正反解无穷展开式。算例分析验证表明,该方法推导出的纬度正反解展开式是正确的。傅里叶级数方法为分析一类正反解问题无穷展开式的一般系数和形式提供了理论分析依据,具有通用性,丰富了纬度正反解变换的相关理论。  相似文献   

8.
《Ocean Engineering》1999,26(2):147-160
An explicit and concise approximation to the wavelength in which the effect of nonlinearity is involved and presented in terms of wave height, wave period, water depth and gravitational acceleration. The present approximation is in a rational form of which Fenton and Mckee's (1990, Coastal Engng 14, 499–513) approximation is reserved in the numerator and the wave steepness is involved in the denominator. The rational form of this approximation can be converted to an alternative form of a power-series polynomial which indicates that the wavelength increases with wave height and decreases with water depth. If the determined coefficients in the present approximation are fixed, the approximating formula can provide a good agreement with the wavelengths numerically obtained by Rienecker and Fenton's (1981, J. Fluid Mech. 104, 119–137) Fourier series method, but has large deviations when waves of small amplitude are in deep water or all waves are in shallow water. The present approximation with variable coefficients can provide excellent predictions of the wavelengths for both long and short waves even, for high waves.  相似文献   

9.
An explicit and concise approximation to the wavelength in which the effect of nonlinearity is involved and presented in terms of wave height, wave period, water depth and gravitational acceleration. The present approximation is in a rational form of which Fenton and Mckee's (1990, Coastal Engng 14, 499–513) approximation is reserved in the numerator and the wave steepness is involved in the denominator. The rational form of this approximation can be converted to an alternative form of a power-series polynomial which indicates that the wavelength increases with wave height and decreases with water depth. If the determined coefficients in the present approximation are fixed, the approximating formula can provide a good agreement with the wavelengths numerically obtained by Rienecker and Fenton's (1981, J. Fluid Mech. 104, 119–137) Fourier series method, but has large deviations when waves of small amplitude are in deep water or all waves are in shallow water. The present approximation with variable coefficients can provide excellent predictions of the wavelengths for both long and short waves even, for high waves.  相似文献   

10.
Traditional wave steepness s=H/L does not define steep asymmetric waves in a random sea uniquey. Three additional parameters characterising single zero-downcross waves in a time series are crest front steepness, vertical asymmetry factor and horizontal asymmetry factor. Results for steepness and asymmetry from zero-downcross analysis of wave data obtained from full scale measurements in deep water on the Norwegian continental shelf in 58 time series are presented. The analysis demonstrates clearly the asymmetry of both “extreme waves” and the highest waves. The period and height of the highest waves are also given together with their correlation to spectral parameters. The measured maximum wave heights are also compared with predicted values of maximum wave heights showing good agreement.  相似文献   

11.
《Applied Ocean Research》2004,26(3-4):114-136
Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Næss model [Næss A. On the distribution of crest to trough wave heights. Ocean Engineering (1985);12(3):221–34] and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights.Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregressive model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. Thus, the joint distribution of three successive wave heights can be obtained by combining conditional bivariate distributions. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation.Successive wave periods with corresponding wave heights exceeding a certain threshold have also been studied. Results show that the distribution for successive wave periods when the corresponding wave heights exceed the root-mean-square value of the wave heights, can be approximated by a multivariate Gaussian distribution.The theoretical distributions are compared with observed wave data obtained from field measurements in the central North Sea and in the Japan Sea, with laboratory data and numerical simulations.  相似文献   

12.
A three-dimensional modeling of multidirectional random-wave diffraction by a group of rectangular submarine pits is presented in this paper. The fluid domain is divided into N interior regions representing the pit area and an overall exterior region separated by the imaginary pit boundaries. In the interior region, the analytical expressions of the Fourier series expansion for velocity potentials in the pit regions have been derived with the unknown coefficients determined from a series of Green's function based boundary integral equations. The boundary integral approach has also been applied to obtain the velocity potential and free-surface elevation in the exterior region. The Pierson–Moskowitz (P–M) frequency spectrum was selected for the random wave simulation using the superposition of solutions of a finite number of decomposed wave components. Numerical results for the cases of regular waves and random waves are presented to examine the influences of the pit geometry and incident wave condition on the overall wave field. The general diffraction pattern of alternate bands of increase and decrease of relative wave height in front of the pit system can be observed. It is found that, in the shadow region, the relative wave height is reduced. As the number of pit increases, the effectiveness of reducing the relative wave height behind the multiple-pit system increases. However, the relative wave height within the pit area and in front of the leading pit shows increasing trend. It is noticed that under the random-wave condition, the level of increase and decrease of the relative wave height due to the existence of submarine pits is less pronounced than that observed from results in regular-wave condition.  相似文献   

13.
In connection with the problem of revealing cause-effect relations among different climatic characteristics, methods for determining the dependence between time series on the basis of selected auto-and cross-covariance functions and periodograms expressed in terms of the Fourier coefficients of the initial series are discussed. Real time series do not always satisfy the conditions of statistical stationarity, so that their analysis requires a combination of statistical and deterministic approaches. The possibility of using the above numerical characteristics in relation to such series is considered. Characteristic features of describing finite segments of time series with the use of their Fourier coefficients is studied in detail. The main emphasis is on the determination of the time shifts (delays) at which the covariance between the series is maximal. The problems that appear during a practical implementation of the periodogram method for shift estimation are discussed. A previously unknown formula that is necessary for further studies and relates the Fourier transform of a selected correlation function to the periodogram of the series is derived.  相似文献   

14.
This paper describes two algorithms for the retrieval of high-resolution wind and wave fields from radar-image sequences acquired by a marine X-band radar. The wind-field retrieval algorithm consists of two parts. In the first part, wind directions are extracted from wind-induced streaks, which are approximately in line with the mean surface wind direction. The methodology is based on the retrieval of local gradients from the mean radar backscatter image and assumes the surface wind direction to be oriented normal to the local gradient. In the second part, wind speeds are derived from the mean radar cross section. Therefore, the dependence of the radar backscatter on the wind vector and imaging geometry has to be determined. Such a relationship is developed by using neural networks (NNs). For the verification of the algorithm, wind directions and speeds from nearly 3300 radar-image sequences are compared to in situ data from a colocated wind sensor. The wave retrieval algorithm is based on a methodology that, for the first time, enables the inversion of marine radar-image sequences to an elevation-map time series of the ocean surface without prior calibration of the acquisition system, and therefore, independent of external sensors. The retrieved ocean-surface elevation maps are validated by comparison of the resulting radar-derived significant wave heights, with the significant wave heights acquired from three colocated in situ sensors. It is shown that the accuracy of the radar-retrieved significant wave height is consistent with the accuracy of the in situ sensors.  相似文献   

15.
A new method for wave motion detection from satellite altimetric measurements of sea surface height is presented. The essence of the approach is to construct a two‐dimensional traveling‐wave Fourier series representation of the amplitude field within a prespecified oceanic region. The method employs an iterative, nonlinear least‐squares technique based on the Marquardt‐Levenberg algorithm to solve for model parameters describing characteristic features of the evolving wave system. The Marquardt‐Levenberg Fourier series (MLFS) algorithm was applied to Kelvin waves active during the 1986–1987 El Nino event in the equatorial Pacific ocean using GEOSAT Exact Repeat Mission altimetry data. Characteristics of the wave system were found to be in essential agreement with earlier field measurements and the observations of Cheney and Miller (1987) obtained using time series developed from GEOSAT data. The advantage of the present detection scheme lies in its speed and ability to determine a wave system's dispersion relation over a finite range of wavenumbers, and hence the group velocity of that system.  相似文献   

16.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

17.
Slamming pressures are predicted using a nonlinear ship motion program whose input is an ensemble of short wave trains tailored to produce a large, linear pitch response. These short wave trains are calculated via a design methodology that first creates short time series containing a specified, large ship response and then back-calculates the incident wave trains using linear systems theory. The background simulations and theory used to create these short time series are presented here. Monte Carlo simulation of moderately rare events of a random process indicate the random Fourier component phase PDFs are non-uniform, non-identically distributed, and dependent on the rarity of the target event. These PDFs are modeled using a single parameter, Modified Gaussian distribution and used to generate design time series with a given expected value at a specific time. To predict rare events without resorting to Monte Carlo simulation, the parameters of the Modified Gaussian distributions are calculated via characteristic function comparison. The characteristic functions compare a target PDF calculated from extreme value theory to a PDF based on a discrete Fourier representation of the stochastic process with non-uniform component phases. The comparison to extreme value theory helps to quantify the risk associated with rare events.  相似文献   

18.
Articulated towers are a compliant type of platform particularly suited for deep water applications. In the design of articulated towers, it is very important that the motion characteristics include sufficient stability, less acceleration in the deck and the smallest possible loading on the articulated joint. The mass distribution along the tower also plays an important role in the motion characteristics of the tower. Multi-leg articulated towers with three or more towers (legs or shafts), which have been developed from the conventional single tower have reduced horizontal movements and have more deck area compared to the single-leg articulated towers. The experimental and analytical investigations on such towers are not available in the published literature. In this paper, both analytical treatment and an experimental program for a three-leg articulated tower model have been reported. The effect of mass distributions on the variations of the bending moment and the deck accelerations are also presented. The model has been tested in a 2 m wave flume for various wave frequencies and wave heights of regular waves. The model is also analysed using a computer program developed, and the comparison of theoretical results with the experimental results is presented.  相似文献   

19.
Quantification of nearshore morphology based on video imaging   总被引:1,自引:0,他引:1  
The Argus network is a series of video cameras with aerial views of beaches around the world. Intensity contrasts in time exposure images reveal areas of preferential breaking, which are closely tied to underlying bed morphology. This relationship was further investigated, including the effect of tidal elevation and wave height on the presence of wave breaking and its cross-shore position over sand bars. Computerized methods of objectively extracting shoreline and sand bar locations were developed, allowing the vast quantity of data generated by Argus to be more effectively examined. Once features were identified in the images, daily alongshore mean values were taken to create time series of shoreline and sand bar location, which were analyzed for annual cycles and cross-correlated with wave data to investigate environmental forcing and response.These data extraction techniques were applied to images from four of the Argus camera sites. A relationship between wave height and shoreline location was found in which increased wave heights resulted in more landward shoreline positions; given the short lag times over which this correlation was significant, and that the strong annual signal in wave height was not replicated in the shoreline time series, it is likely that this relationship is a result of set-up during periods of large waves. Wave height was also found to have an effect on sand bar location, whereby an increase in wave height resulted in offshore bar migration. This correlation was significant over much longer time lags than the relationship between wave height and shoreline location, and a strong annual signal was found in the location of almost all observed bars, indicating that the sand bars are migrating with changes in wave height. In the case of the site with multiple sand bars, the offshore bars responded more significantly to changes in wave height, whereas the innermost bar seemed to be shielded from incident wave energy by breaking over the other bars. A relationship was also found between a site's mean wave height and inner sand bar location; sites with the highest wave heights tended to have sand bars farther from shore than those with relatively low wave heights.  相似文献   

20.
Surface water wave elevations and kinematics from four unidirectional irregular wave trains, with a Pierson and Moskowitz or JONSWAP random wave spectrum, were measured in the laboratory using resistance wave probes and a laser Doppler anemometer. The wave elevation data, velocity time series, extreme (largest) wave horizontal velocity profiles and extreme wave acceleration fields are compared with the predictions of a new wave kinematics model, named the hybrid wave model. Irregular waves are commonly viewed as the summation of many linear wave components of different frequencies, but more accurate predictions of downstream surface elevations (wave evolution) and wave kinematics are attained by considering the non-linear interactions among wave components. The hybrid wave model incorporates these non-linear wave component interactions, and its wave evolution predictions and kinematics estimates are compared with laboratory measurements in this study. Linear random wave theory, Wheeler stretching and linear extrapolation wave kinematic prediction techniques are also compared. Comparisons between measurements and hybrid wave model estimates demonstrate its improved capability to predict velocity and acceleration fields and wave evolution in two-dimensional irregular waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号