首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

2.
Dust-acoustic (DA) solitary waves are investigated in a magnetized dusty plasma comprising cold dust fluid and kappa-distributed ions and/or electrons. The influence of suprathermal particles, obliqueness, and ion temperature on the DA solitary waves is investigated. We find that only negative DA solitary waves will be excited in this model. Also it is shown that the amplitude of the DA solitary wave decreases with deviation of electrons or ions from Maxwellian distribution via decrease of κ e or κ i . The effect of the temperature of the ion decreases with the amplitude and steepness of the solitary wave front.  相似文献   

3.
Properties of ion acoustic solitons head-on collision in an ultracold neutral plasma composed of ion fluid and non-Maxwellian electron distributions are investigated. For this purpose, the extended Poincare-Lighthill-Kuo (PLK) method is employed to derive coupled Kortweg-de Vries (KdV) equations describing the system. The nonlinear evolution equations for the colliding solitons and corresponding phase shifts are investigated both analytically and numerically. It is found that the polarity of the colliding solitons strongly depends on the type of the non-Maxwellian distribution (via nonthermal or superthermal electron distributions). Especially the phase shift due to solitons collision is strongly influenced by the non-Maxwellian distribution. A new critical nonthermal parameter β c , characterizing the nonthermal electron distribution, and which is not present for superthermal particle distributions, allows the existence of double polarity of the solitons. The phase shift increases below β c for compressive solitons, but it decreases above β c for rarefactive soliton. For superthermal distribution the phase shift increases rapidly for low spectral index κ, whereas for higher values of κ, the phase shift decreases smoothly and becomes nearly stable for κ>10. Around β c and small values of κ, the deviation from the Maxwellian state is strongest, and therefore the phase shift has unexpected behavior due to the presence of more energetic electrons that are represented by the non-Maxwellian distributions. The nonlinear structure, as reported here, could be useful for controlling the solitons that may be created in future ultracold neutral plasma experiments.  相似文献   

4.
The time fractional modified KdV, the so-called TFMKdV equation is solved to study the nonlinear propagation of the dust acoustic (DA) solitary waves in un-magnetized four components dusty plasma. This plasma consists of positively charged warm adiabatic dust, negatively charged cold dust, non-isothermal electrons and Maxwellian ions. The TFMKdV equation is derived by using semi-inverse and Agrawal’s method and solved by the Laplace Adomian decomposition method (LADM). The effects of the time fractional order (β), the ratio of dust to ion temperature (δ d ), the time (τ), the mass and charge ratio (α), the non-isothermal parameter (γ) and wave velocity (v) on the DA solitary wave are studied. Our results show that the variations of the amplitude of DA solitary wave versus (γ) are in agreement with the results obtained previously. Moreover, the time fractional order plays a role of higher order perturbation in modulating the soliton shape. The achievements of this research for the DA solitary waves may be applicable in space plasma environments and laboratory plasmas.  相似文献   

5.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   

6.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

7.
Propagation regimes of large-amplitude dust-ion acoustic solitary wave in a dusty plasma with nonthermal electrons are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the nonthermal and plasma parameters. The two types of soliton solution are found to be exited corresponding to certain values of the nonthermal parameter. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and nonthermal parameters. The findings of this investigation could be useful in understanding the detected solitary waves in space plasma in the presence of nonthermal electrons such as electrostatic solitary structures observed in Saturn’s E-ring.  相似文献   

8.
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth’s auroral zone is highlighted.  相似文献   

9.
Making use of the Sagdeev pseudo-potential approach, we derive the energy like equation for dust-acoustic (DA) solitary waves in a complex plasma having negatively charged cold dust, and electrons/ions featuring the Tsallis distribution. The effects of electron and ion nonextensivity on the DA soliton profile are examined. It is shown that depending on the strength of particle nonextensivity, our plasma model may admit compressive as well as rarefactive DA solitary waves. Our results complement previously published results on this problem.  相似文献   

10.
Based on data from the SONG and SPR-N multichannel hard electromagnetic radiation detectors onboard the CORONAS-F space observatory and the X-ray monitors onboard GOES satellites, we have distinguished the thermal and nonthermal components in the X-ray spectrum of an extreme solar flare on January 20, 2005. In the impulsive flare phase determined from the time of the most efficient electron and proton acceleration, we have obtained parameters of the spectra for both components and their variations in the time interval 06:43–06:54 UT. The spectral index in the energy range 0.2–2 MeV for a single-power-law spectrum of accelerated electrons is shown to have been close to 3.4 for most of the time interval under consideration. We have determined the time dependence of the lower energy cutoff in the energy spectrum of nonthermal photons E γ0(t) at which the spectral flux densities of the thermal and nonthermal components become equal. The power deposited by accelerated electrons into the flare volume has been estimated using the thick-target model under two assumptions about the boundary energy E 0 of the electron spectrum: (i) E 0 is determined by E γ0(t) and (ii) E 0 is determined by the characteristic heated plasma energy (≈5kT (t)). The reality of the first assumption is proven by the fact that plasma cooling sets in at a time when the radiative losses begin to prevail over the power deposited by electrons only in this case. Comparison of the total energy deposited by electrons with a boundary energy E γ0(t) with the thermal energy of the emitting plasma in the time interval under consideration has shown that the total energy deposited by accelerated electrons at the beginning of the impulsive flare phase before 06:47 UT exceeds the thermal plasma energy by a factor of 1.5–2; subsequently, these energies become approximately equal and are ~(4–5) × 1030 erg under the assumption that the filling factor is 0.5–0.6.  相似文献   

11.
Propagation of ion acoustic solitary waves are studied in e-p-i plasmas containing high relativistic ions, Maxwell–Boltzmann distributed positrons and nonthermal electrons. Reductive perturbation method is used and the Korteweg-de Vries (KdV) equation is derived. The effects of high relativistic ions and nonthermal electrons on soliton characters are studied.  相似文献   

12.
The problem of solitary electron acoustic (EA) wave propagation in a plasma with nonthermal hot electrons featuring the Tsallis distribution is addressed. A physically meaningful nonextensive nonthermal velocity distribution is outlined. It is shown that the effect of the nonthermal electron nonextensivity on EA waves can be quite important. Interestingly, we found that the phase speed of the linear EA mode increases as the entropic index q decreases. This enhancement is weak for q>1, and significant for q<1. For a given nonthermal state, the minimum value of the allowable Mach numbers is lowered as the nonextensive nature of the electrons becomes important. This critical limit is shifted towards higher values as the nonthermal character of the plasma is increased. Moreover, our plasma model supports rarefactive EA solitary waves the main quantities of which depend sensitively on q. This dependency (for q>1) becomes less noticeable as the nonthermal parameter decreases. Nevertheless, decreasing α yields for q<0 a different result, a trend which may be attributed to the functional form of the nonthermal nonextensive distribution. Our study (which is not aimed at putting the ad hoc Cairns distribution onto a more rigorous foundation) suggests that a background electron nonextensivity may influence the EA solitons.  相似文献   

13.
Properties of fully nonlinear ion-acoustic solitary waves in an unmagnetized and collisionless pair-ion (PI) plasma containing superthermal electrons obeying Cairns distribution have been analyzed. A linear biquadratic dispersion relation has been derived, which yields the fast (supersonic) and slow (subsonic) modes in a pair-ion-electron plasma with nonthermal electrons. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in case of slow mode, both electrostatic hump and dip type structures are formed depending on the temperature difference between positively and negatively charged ions, whereas, only dip type solitary structures have been observed for fast mode. The present work may be employed to explore and to understand the formation of solitary structures in the space (especially, the Earth’s ionosphere where two distinct pair ion species (H ±) are present) and laboratory produced pair-ion plasmas with nonthermal electrons.  相似文献   

14.
The problem of arbitrary amplitude electron-acoustic solitary (EAS) waves in a plasma having cold fluid electrons, hot superthermal electrons and stationary ions is addressed. The domain of their allowable Mach numbers enlarges as the spectral index κ increases revealing therefore that the “maxwellisation” process of the hot component favors the propagation of the EAS waves. As the superthermal character of the plasma is increased, the potential pulse amplitude increases while its width is narrowed, i.e, the superthermal effects makes the electron-acoustic solitary structure more spiky. As the spectral index κ decreases, the hot electrons are locally expelled and pushed out of the region of the soliton’s localization. A decrease of the fractional number density of the hot electrons relative to that of the cold ones number density would lead to an increase of the depth as well as the width of the localized EAS wave. Our results should help to understand the salient features of large amplitude localized structures that may occur in the plasma sheet boundary layer and may provide an explanation for the strong spiky waveforms that have been observed in auroral electric fields.  相似文献   

15.
The properties of small but finite amplitude dust acoustic (DA) shock waves are studied in a charge varying dusty plasma with ions and electrons having kappa velocity distribution. We obtain the global Debye length including the influence of suprathermality effects and dust charge fluctuations. It is shown that the effects of suprathermality of ions/electrons and dust charge fluctuation significantly modify the basic properties of DA shock wave. We observe that only negative DA shock waves will be excited in this model. The amplitude of DA shock wave increases with deviation of electrons or ions from Maxwellian distribution via decrease of spectral index, κ j (j=i,e denotes, ions and electrons, respectively). Also, it is indicated that the amplitude and steepness of the shock front decreases with an increase in the ion temperature.  相似文献   

16.
Dust acoustic (DA) solitary wave existence conditions are investigated for positively charged dust particles in the presence of nonthermal electrons. Once Sagdeev pseudo-potential derived through fluid equations, for large amplitude DA waves, the lower limit on Mach number is calculated analytically using the necessary condition for the solitary waves existence. The double layers conditions provides the upper limit on Mach number. This allowed us to numerically investigate the effect of the temperature, density and nonthermal parameters on the solitary waves’ characteristics. The present study is devoted to a complex plasma subject to ultraviolet radiations such as the one in the lower earth’s ionosphere.  相似文献   

17.
Theoretically the propagation of two ion acoustic soliton interaction in a three component collisionless unmagnetized plasma which consists of electrons, positrons and cold ions, has been investigated here by employing reductive perturbation technique. In this study, q distributed electrons and Maxwell-Boltzmann distributed positrons are considered and Korteweged-de Vries (KdV) equation is derived. The KdV equation is solved to get two soliton solution by using Hirota bilinear method. The effects of the q distributed electrons on the profiles of two soliton structures and the corresponding phase shifts are investigated. It is observed that both the nonextensive parameter (q) and the ratio of positrons density and electron density (p=n p0/n e0), play a significant role in the formation and existence of two soliton and also in the nature of their phase shifts.  相似文献   

18.
A theoretical investigation has been made on the Dust ion-acoustic (DIA) Gardner solitons (GSs) and double layers (DLs) in electronegative plasma consisting of inertial positive and negative ions, super-thermal (kappa distributed) electrons, and negatively charged static dust. The standard reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and standard Gardner equations, which admits solitary waves (SWs) and DLs solutions. It have been found that GSs and DLs exist for α around its critical value α c , where α c is the value of α corresponding to the vanishing of the nonlinear coefficient of the K-dV equation. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. The basic features of DIA SWs and DLs are analyzed and it has been found that the polarity, speed, height, thickness of such DIA SWs and DLs structures, are significantly modified due to the presence of two types of ions and spectral index (κ) of super-thermal electrons. It has also been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV solitons. The relevance of our results to different interstellar space plasma situations are discussed.  相似文献   

19.
The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ions, and nonthermal electrons is studied. By using the reductive perturbation theory, the Kadomtsev–Petviashivili (KP) equation is derived. The energy of the soliton has been calculated. By using standard normal modes analysis a linear dispersion relation has been obtained. The effects of variable dust charge on the energy of the soliton and the angular frequency of the linear wave are also discussed. It is shown that the amplitude of solitary waves of the KP equation diverges at the critical values of plasma parameters. We derive solitons of a modified KP equation with finite amplitude in this situation.  相似文献   

20.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号