首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sellafield in West Cumbria was a potential site for the location of the UK's first underground repository for radioactive, intermediate level waste (ILW). The repository was to lie around 650 m beneath the ground surface within rocks of the Borrowdale volcanic group (BVG), a thick suite of SW dipping, fractured, folded and metamorphosed Ordovician meta-andesites and ignimbrites. These are overlain by an onlapping sequence of Carboniferous and Permo-Triassic sediments. In situ borehole measurements showed that upward trending fluid pressure gradients exist in the area of the potential repository site, and that there are three distinct fluid types in the subsurface; fresh, saline and brine (at depth, to the west of the site). Simulations of fluid flow in the Sellafield region were undertaken with a 2D, steady-state, coupled fluid and heat flow simulation code (OILGEN). In both simplified and geologically complex models, topographically driven flow dominated the regional hydrogeology. Fluids trended persistently upwards through the potential repository site. The dense brine to the west of the site promoted upward deflection of topographically driven groundwaters. The inclusion in hydrogeological models of faults and variably saline sub-surface fluids was essential to the accurate reproduction of regional hydraulic head variations. Sensitivity analyses of geological variables showed that the rate of groundwater flow through the potential repository site was dependent upon the hydraulic conductivity of the BVG, and was unaffected by the hydraulic conductivity of other hydrostratigraphic units. Calibration of the model was achieved by matching simulated subsurface pressures to those measured in situ. Simulations performed with BVG hydraulic conductivity 100 times the base case median value provided the “best-fit” comparison between the calculated equivalent freshwater head and that measured in situ, regardless of the hydraulic conductivity of other hydrostratigraphic units. Transient mass transport simulations utilising the hydraulic conductivities of this “best fit” simulation showed that fluids passing through the potential repository site could reach the surface in 15 000 years. Simple safety case implications drawn from the results of the study showed that the measured BVG hydraulic conductivity must be less than 0.03 m year−1 to be simply declared safe. Recent BVG hydraulic conductivity measurements showed that the maximum BVG hydraulic conductivity is around 1000 times this safety limit.  相似文献   

2.
In present study, the non-linear variations of soil compressibility, hydraulic and electro-osmosis conductivities were analyzed through laboratory experiments, and incorporated in a one-dimensional model. The analytical solutions for excess pore water pressure and degree of consolidation were derived, and numerical simulations were performed to verify its effectiveness. The results indicated that both the non-linear variations of hydraulic and electro-osmosis conductivities showed remarkable impacts on the excess pore water pressure and degree of consolidation, especially for soils with relative high compressibility. A further comparison with previous analytical solutions indicated that more accurate predictions could be obtained with the proposed analytical solutions.  相似文献   

3.
This paper numerically investigates the slurry shield tunneling in fully saturated soils with different hydraulic conductivities in short- and long-term scales. A fully coupled hydromechanical three-dimensional model that accounts for the main aspects of tunnel construction and the hydromechanical interactions due to tunneling process is developed. An elasto-plastic constitutive model obeying a double hardening rule, namely hardening soil model, is employed in the numerical simulations. The research mainly focuses on assessing the influence of soil hydraulic conductivity and the method to simulate backfill grouting in the tail void on the evolution of ground subsidence, excess pore water pressure and lining forces. Two different consolidation schemes have been taken into account to computationally address the tunnel construction in soil with low and high hydraulic conductivities. In addition, different methods are employed to simulate the tail void grouting as a hydromechanical boundary condition and to study its effects on the model responses. Finally, the influences of infiltration of the fluidized particles of grouting suspension into the surrounding soil and its corresponding time–space hydraulic conductivity evolution on the displacements and lining forces are studied.  相似文献   

4.
This paper describes an innovative method to characterise conduction parameters in geomaterials at the particle-scale. The technique is exemplified using 3D synthetic grain packing generated with discrete element approaches. This creates a geo-mechanically viable user-defined 3D granular image through which the particle skeleton and the corresponding pore network are constructed. Images are then imported into the finite element analyses to solve the governing equations of hydraulic and thermal conduction. Navier–Stokes equation is uniquely upscaled to Darcy’s law to assess hydraulic conductivity in soils, while a similar approach implements the Fourier equation to evaluate thermal conduction through grain chains and pore network. High performance computing is used to meet demanding numerical calculations of 3D meshed geometries. Packing density (i.e., porosity) and inter-particle contact areas are explored as variables to highlight the effects of pore volume and inter-particle contact condition in hydraulic and thermal conduction. This emerging technique allows not only characterising the macro-scale behaviour of conduction phenomena in soils but also quantifying and visualising the preferential and local conduction behaviour at the particle-scale. Laboratory measurements of hydraulic and thermal conductivities support numerically obtained results and validate the viability of the new methods used herein. This study introduces an alternative way to determine physical parameters of soils using emerging technology of rigorous numerical simulations in conjunction with 3D images, and to enable fundamental observation of particle-scale mechanisms of macro-scale manifestation.  相似文献   

5.
Modern geostatistical techniques allow the generation of high-resolution heterogeneous models of hydraulic conductivity containing millions to billions of cells. Selective upscaling is a numerical approach for the change of scale of fine-scale hydraulic conductivity models into coarser scale models that are suitable for numerical simulations of groundwater flow and mass transport. Selective upscaling uses an elastic gridding technique to selectively determine the geometry of the coarse grid by an iterative procedure. The geometry of the coarse grid is built so that the variances of flow velocities within the coarse blocks are minimum. Selective upscaling is able to handle complex geological formations and flow patterns, and provides full hydraulic conductivity tensor for each block. Selective upscaling is applied to a cross-bedded formation in which the fine-scale hydraulic conductivities are full tensors with principal directions not parallel to the statistical anisotropy of their spatial distribution. Mass transport results from three coarse-scale models constructed by different upscaling techniques are compared to the fine-scale results for different flow conditions. Selective upscaling provides coarse grids in which mass transport simulation is in good agreement with the fine-scale simulations, and consistently superior to simulations on traditional regular (equal-sized) grids or elastic grids built without accounting for flow velocities.  相似文献   

6.
Two numerical simulation techniques have been used to identify a suitable method to assist in the characterization of DNAPL movement within fractured porous rock aquifers. Both MODFLOW and UTCHEM software modeling suites were used to simulate different scenarios in fracture dip and hydraulic conductivities. The complexity and the physical structure of fracture characterization were shown to have a significant effect on modeling results, to the extent that fracture zone should be characterized fully before simulation models are used for DNAPL simulations. Sensitivity analysis was conducted on both the hydraulic conductivity and fracture dip values. DNAPL movement in the subsurface showed a high sensitivity to fracture dip variation.  相似文献   

7.
开放系统下饱和正冻土热质迁移的数值分析   总被引:3,自引:2,他引:1  
引人Heaviside阶梯函数和Z函数使得冻结区和未冻区的导水系数、导热系数、体积热容量和土水势可以用统一的公式表达,提出了开放系统下饱和土在冻结过程中热质迁移的数学模型.对一个侧面绝热的圆柱土样的热质迁移过程进行了计算机模拟,结果表明:温度变化速率、冻结速率和温度梯度随时间减小,在冻结锋面附件温度分布曲线有拐点,冻结...  相似文献   

8.
李志斌  徐超 《岩土力学》2006,27(Z1):581-585
近年来土工织物膨润土垫(GCL)被越来越多地应用到各种防渗工程中,它的膨胀性和渗透性也成为了设计人员和研究人员所关注的焦点。通过水化膨胀试验、自由膨胀试验和渗透试验,研究了液体对GCL膨胀性能和渗透性能的影响以及膨胀性和渗透性之间存在的相关关系。试验结果表明, 水化液和渗透液的种类对GCL的膨胀性和渗透性有很大影响,其影响分别为:(1) 水化液相同时,渗透液的种类对GCL的渗透系数有影响,而渗透液相同时,水化液的种类对GCL的渗透系数也有影响;(2) GCL的水化膨胀量和渗透系数之间存在相关关系,水化膨胀量越大,渗透系数就越低;(3) GCL中膨润土的自由膨胀量和GCL的渗透系数之间也存在相关关系,自由膨胀量越大,GCL的渗透系数就越低。  相似文献   

9.
Investigations were carried out to determine the hydraulic and hydrochemical properties of crystalline rocks in the Black Forest of Germany and neighbouring regions. Rock permeabilities (K) were determined to a depth of 3500 m. These parameters range from K = 3.5 × 10-10 ms-1 to K = 8.7 × 10-5 ms-1; and can increase up to an order of magnitude which is typical for porous aquifers. It is shown that on an average, granites are more pervious than gneisses and only the permeabilities of gneisses decrease with depth. The geochemistry of natural waters in crystalline rocks is not constant, but varies with depth and location. The concentration increases with depth and the water-type changes from a Ca–-Na–-HCO 3-type (or Na–-Ca–-HCO3–-) at shallow depths to a Na–-Cl-type at greater depths. Thermal springs are found only in granitic rocks with on average higher permeabilities than in gneisses. Thermal waters are welling up in valleys at the bottom of steep mountains. The chemical composition of thermal spring water is identical to that of water found at greater depths. Using geothermometers it is found, that the depth of the deposits of thermal spring water in the crystalline basement rocks of the Black Forest is some 1000 m below the surface. The topographic relief in the mountains induces a deep circulation of infiltrating rain-water with an upwelling as thermal springs in the valleys.  相似文献   

10.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

11.
竖管测定法可现场测定河床的渗透系数.采用人工梯度法和自然梯度法两种方法,对普拉特河位于卡尼市(KearneyCity)东南河段河床的垂直、水平和任意方向的渗透系数进行了野外现场测定.10个测点的垂向渗透系数的平均值为30.51m/d,一个测点的水平方向渗透系数为97.2m/d,其各向异性比率约为3.结果表明:普拉特河床沉积物剖面上具有一定的各向异性,平面上为非均匀介质.  相似文献   

12.
The effect of homogeneous sand lenses on the groundwater flow in an otherwise homogeneous clayey deposit is examined by performing Monte Carlo simulations using a finite element flow model. In the simulations, the locations of the sand lenses are assumed to be mutually independent. The paper examines the effect on the flow field in a clayey deposit of (a) different percentages of sand lenses, (b) different hydraulic conductivities of the sand lenses, (c) different average sand lens sizes, (d) non-uniformity of the sizes of the sand lenses, and (e) localization of the sand lenses. The effect of these non-uniform flow fields on contaminant migration is then examined using a finite element contaminant transport model. For the range of cases considered it is shown that: the volume of sand lenses present has a greater influence than the shape, size, location and hydraulic conductivity of the sand lenses; simplified calculations performed using the geometric and harmonic means of hydraulic conductivity bracket the behaviour evident from more complex analyses; and the maximum impact on an aquifer separated from a waste disposal facility by a deposit containing sand lenses can be modelled to sufficient accuracy, using quite simple flow and contaminant transport models.  相似文献   

13.
The strength of a frozen soil increases with decreasing temperature. Furthermore, the speed it takes to form a frozen wall increases on lowering the temperature of the freezing liquid.

With the traditional freezing systems using brine it is difficult to work with temperatures below −30°C. To go lower than this limit, it is necessary to substitute the brine by using freezing liquids that maintain good hydraulic and thermal characteristics at much lower temperatures.

Different organic liquids have been tested and good results have been obtained with some aromatic hydrocarbon mixes from the terpene family.

As a result of the research, for practical purposes a by-product ofa distilling citrus fruit skins has been selected. This liquid solidifies at −100°C approx. and maintains a low viscosity rate below −30°C.

The present paper describes the thermal and hydraulic properties of this product as a function of the temperature concerned and compares them to the same properties of classic brines of CaCl2.  相似文献   


14.
Field and laboratory methods have been used to determine the hydraulic properties in a multiple-layer aquifer–aquitard system that is hydrologically connected to a river. First, hypothetical pumping tests in aquifer–aquitard systems were performed to evaluate the feasibility of MODFLOW-PEST in determining these parameters. Sensitivity analyses showed that: the horizontal hydraulic conductivity in the aquifer has the highest composite sensitivity; the vertical hydraulic conductivity has higher composite sensitivity than the horizontal hydraulic conductivity in the aquitard; and a partial penetration pumping well in an aquifer layer can improve the quality of the estimated parameters. This inverse approach was then used to analyze a pumping-recovery test conducted near the Platte River in southeastern Nebraska, USA. The hydraulic conductivities and specific yield were calculated for the aquitard and aquifer. The direct-push technique was used to generate sediment columns; permeameter tests on these columns produced the vertical hydraulic conductivities that are compatible with those obtained from the pumping-recovery test. Thus, the combination of the direct-push technique with permeameter tests provides a new method for estimation of vertical hydraulic conductivity. The hydraulic conductivity, determined from grain-size analysis, is smaller than the horizontal one but larger than the vertical one determined by the pumping-recovery test.  相似文献   

15.
三峡库区黄土坡滑坡非饱和水力参数研究   总被引:1,自引:0,他引:1  
简文星  许强  吴韩  童龙云 《岩土力学》2014,35(12):3517-3522
非饱和水力参数在计算滑坡降雨入渗过程与稳定性时是至关重要的材料参数。在三峡库区黄土坡滑坡上进行双环渗透试验,获取黄土坡滑坡表土层的饱和渗透系数。对黄土坡滑坡表土层的含水率和基质吸力进行实时监测,采集了黄土坡滑坡表土层中含水率和基质吸力随时间的变化数据,采用van Genuchten土-水特征曲线模型拟合了4个实时监测剖面的土-水特征曲线及其拟合参数。将饱和渗透系数与土-水特征曲线拟合参数代入van Genuchten渗透系数函数模型,求出了黄土坡滑坡表土层在非饱和条件下的渗透系数函数,为黄土坡滑坡在降雨作用下的稳定性计算提供了可靠的水力参数  相似文献   

16.
沉积盆地是流体活动最活跃的场所,而地层渗透率则是盆地流体运移的基础数据.沉积盆地中的热-重力驱动型流体的运移依赖于盆地的水文地质特征和成矿流体特征.为研究地层渗透率的改变对湖南锡矿山锑矿床成矿流体热场和流场的影响,首先选取一个对比地层渗透率组,计算出区域的热场和流场分布,然后改变导水地层渗透率的大小,并将其计算结果与对比渗透率组的热场结果进行对比,结果显示改变地层渗透率的大小对区域流场的影响较大,而对区域热场的影响则不大.在所讨论的地层渗透率组取值范围内,地层渗透率的改变对区域热场的影响介于5%~10%间,而地层渗透率的改变对区域流场的影响则达到2~3倍.  相似文献   

17.
This paper presents an investigation of the reactive transport of multicomponent chemicals in clays under coupled thermal, hydraulic, chemical and mechanical framework, considering the diffusion processes in detail. More specifically, combined effects due to the electrochemical and the thermal diffusion potentials are investigated. A theoretical framework for coupling thermal diffusion, i.e. the Soret effect, with electrochemical diffusion in a multi-ionic system is provided. An explicit form of a definition for the thermal diffusion coefficient in a multicomponent chemical transport model is developed. Chemical transport is linked to an advanced geochemical model, PHREEQC (version 2), in order to include chemical reactions. The effects of the combined diffusion potentials on the reactive transport of multicomponent chemicals are investigated by a series of numerical simulations of coupled thermal, hydraulic and chemical behaviour.  相似文献   

18.
水泥-膨润土泥浆配比对防渗墙渗透性能的影响   总被引:2,自引:0,他引:2  
徐超  黄亮  邢皓枫 《岩土力学》2010,31(2):422-426
作为一种垂直防渗墙体材料,水泥-膨润土泥浆已在欧美等一些国家被广泛应用于垃圾填埋场的垂直防渗系统中,而国内对此类墙体材料的研究和应用较少。通过对不同配合比的水泥-膨润土泥浆固结体进行渗透试验,研究了原材料对泥浆固结体渗透性能的影响以及渗透性随龄期变化的情况。试验结果表明,水泥和膨润土对固结体渗透系数的影响相互依赖,只有在水泥用量达到一定程度后,增加膨润土用量才能有效地降低固结体的渗透性能;随着龄期的增加,水泥-膨润土泥浆固结体的渗透系数明显降低。  相似文献   

19.
This paper presents streambed hydraulic conductivities of the Platte River from south-central to eastern Nebraska. The hydraulic conductivities were determined from river channels using permeameter tests. The vertical hydraulic conductivities (K v ) from seven test sites along this river in south-central Nebraska belong to one statistical population. Its mean value is 40.2 m/d. However, the vertical hydraulic conductivities along four transects of the Ashland test site in eastern Nebraska have lower mean values, are statistically different from the K v values in south-central Nebraska, and belong to two different populations with mean values of 20.7 and 9.1 m/d, respectively. Finer sediments carried from the Loup River and Elkhorn River watersheds to the eastern reach of the Platte River lowers the vertical hydraulic conductivity of the streambed. Correlation coefficients between water depth and K v values along a test transect indicates a positive correlation – a larger K v usually occurs in the part of channel with deeper water. Experimental variograms derived from the vertical hydraulic conductivities for several transects across the channels of the Platte River show periodicity of spatial correlation, which likely result from periodic variation of water depth across the channels. The sandy to gravelly streambed contains very local silt and clay layers; spatially continuous low-permeability streambed was not observed in the river channels. The horizontal hydraulic conductivities were larger than the vertical hydraulic conductivities for the same test locations.  相似文献   

20.
求解库岸边坡岩土体的渗透系数是研究滑坡渗流场及多场演化的基础,一般通过原位试验和室内试验求得,但试验成本较高且试验位置具有一定的随机性。本文以三峡库区马家沟滑坡为例,提出一种利用地下水位动态观测资料反演滑坡岩土层渗透系数的方法。具体步骤为:(1)依据滑坡的勘察资料和水位观测数据,构建滑坡数值模型;(2)利用SPSS生成不同渗透系数正交试验组合,并将渗透系数代入数值模型中计算监测井的水位,得到不同渗透系数及其对应的模拟水位数据;(3)应用遗传算法优化的支持向量机构建坡体模拟水位与渗透系数的非线性映射关系,再通过代入实际动态监测水位值求得滑坡岩土层的渗透系数;(4)将求得的渗透系数代入数值模型,用计算的模拟水位与实际观测水位进行对比验证。研究结果表明:遗传算法优化的支持向量机具有良好的学习预测效果,能准确预测渗透系数与水位的关系。该反演方法具有高效、准确的优点,反演结果的精度满足实际应用需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号