首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Frequencies of intermediate-degree f modes of the Sun seem to indicate that the solar radius is smaller than what is normally used in constructing solar models. We investigate the possible consequences of an error in radius on results for solar structure obtained using helioseismic inversions. It is shown that solar sound speed will be overestimated if oscillation frequencies are inverted using reference models with a larger radius. Using solar models with a radius of 695.78 Mm and new data sets, the base of the solar convection zone is estimated to be at a radial distance of 0.7135 ± 0.0005 of the solar radius. The helium abundance in the convection zone as determined using models with an OPAL equation of state is 0.248 ± 0.001, where the errors reflect the estimated systematic errors in the calculation, the statistical errors being much smaller. Assuming that the OPAL opacities used in the construction of the solar models are correct, the surface Z / X is estimated to be 0.0245 ± 0.0006.  相似文献   

2.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have observed the   z =0.78  cluster MS 1137.5+6625 with the Ryle Telescope (RT) at 15 GHz. After subtraction of contaminating radio sources in the field, we find a Sunyaev–Zel'dovich flux decrement of  -421±60 μJy  on the ≈0.65 k λ baseline of the RT, spatially coincident with the optical and X-ray positions for the cluster core.
For a spherical King-profile cluster model, the best fit to our flux measurement has a core radius   θ C=20 arcsec  , consistent with previous X-ray observations, and a central temperature decrement  Δ T =650±92 μK  .
Using this model, we calculate that the cluster has a gas mass inside a     radius of  2.9×1013 M  for an  Ω M =1  universe and  1.6×1013 M  for  Ω M =0.3  ,  ΩΛ=0.7  . We compare this model with existing measurements of the total mass of the cluster, based on gravitational lensing, and estimate a gas fraction for MS 1137.5+6625 of ≈8 per cent.  相似文献   

4.
Although systematic measurements of the Sun's polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock–Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order  1012 cm2 s−1  ), we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.  相似文献   

5.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

6.
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.  相似文献   

7.
Solar diameter measurements have been made nearly continuously through different techniques for more than three centuries. They were obtained mainly with ground-based instruments except for some recent estimates deduced from space observations. One of the main problems in such space data analysis is that, up to now, it has been difficult to obtain an absolute value owing to the absence of an internally calibrated system. Eclipse observations provide a unique opportunity to give an absolute angular scale to the measurements, leading to an absolute value of the solar diameter. However, the problem is complicated by the Moon limb, which presents asphericity because of the mountains. We present a determination of the solar diameter derived from the total solar eclipse observation in Turkey and Egypt on 29 March 2006. We found that the solar radius carried back to 1 AU was 959.22±0.04 arcsec at the time of the observations. The inspection of the compiled 19 modern eclipses data, with solar activity, shows that the radius changes are nonhomologous, an effect that may explain the discrepancies found in ground-based measurements and implies the role of the shallow subsurface layers (leptocline) of the Sun.  相似文献   

8.
By using the sunspot time series as a proxy, we have made a detailed analysis of the mean solar magnetic field over the last two and half centuries, by means of a reconstruction of its phase space. We find evidence of a long-term trend variation of some of the solar physical processes (over a few decades) that might be responsible for the apparent erratic behaviour of the solar magnetic cycle. The analysis is done by means of a careful study of the axisymmetric dynamo model equations, where we show that the temporal counterpart of the magnetic field can be described by a self-regulated two-dimensional dynamic system, usually known as a Van der Pol–Duffing oscillator. Our results suggest that during the last two and half centuries, the velocity of the meridional flow, v p, and the efficiency of the α mechanism responsible for the conversion of toroidal magnetic field into poloidal magnetic field might have suffered variations that can explain the observed variability in the solar cycle.  相似文献   

9.
Mayall II = G1 is one of the most luminous globular clusters (GCs) known in M31. New deep, high-resolution observations with the Advanced Camera for Surveys on the Hubble Space Telescope are used to provide accurate photometric data to the smallest radii yet. In particular, we present the precise variation of ellipticity and position angle, and of surface brightness for the core of the object. Based on these accurate photometric data, we redetermine the structural parameters of G1 by fitting a single-mass isotropic King model. We derive a core radius,   r c= 0.21 ± 0.01  arcsec (= 0.78 ± 0.04  pc)  , a tidal radius,   r t= 21.8 ± 1.1  arcsec (= 80.7 ± 3.9  pc)  , and a concentration index   c = log ( r t/ r c) = 2.01 ± 0.02  . The central surface brightness is 13.510 mag arcsec−2. We also calculate the half-light radius, at   r h= 1.73 ± 0.07  arcsec (= 6.5 ± 0.3  pc)  . The results show that, within 10 core radii, a King model fits the surface brightness distribution well. We find that this object falls in the same region of the   MV   versus  log   R h  diagram as ω Centauri, M54 and NGC 2419 in the Milky Way. All three of these objects have been claimed to be the stripped cores of now defunct dwarf galaxies. We discuss in detail whether GCs, stripped cores of dwarf spheroidals and normal dwarf galaxies form a continuous distribution in the   MV   versus  log   R h  plane, or if GCs and dwarf spheroidals constitute distinct classes of objects; we present arguments in favour of this latter view.  相似文献   

10.
The solar photospheric abundance of ruthenium is revised on the basis of a new set of oscillator strengths derived for Ru  i transitions with wavelengths in the spectral range 2250–4710 Å. The new abundance value (in the usual logarithmic scale where the solar hydrogen abundance is equal to 12.00),   A Ru= 1.72 ± 0.10  , is in agreement with the most recent meteoritic result,   A Ru= 1.76 ± 0.03  . The accuracy of the transition probabilities, obtained using a relativistic Hartree–Fock model including core-polarization effects, has been assessed by comparing the theoretical lifetimes with previous experimental results. A comparison is also made with new measurements performed in this work by the time-resolved laser-induced fluorescence spectroscopy for 10 highly excited odd-parity levels of Ru  i .  相似文献   

11.
F. Noël 《Solar physics》2005,232(1-2):127-141
Ground-based results on cyclic variations of the apparent solar radius are so far controversial and inconsistent. This is blamed to atmospheric noise which effects can be so severe that even in cases in which the observations are made with similar instruments, the results show strong disagreements (Li et al.: 2003, Astrophys. J. 591, 1267). Such claim concerns the results of Danjon astrolabes which during the last decades have been used widely at several sites for solar metrology. The long-term series with thousands of radius measurements made with astrolabe at Calern, France, and at Santiago, Chile, is a case in which the results of radius variations in time are strongly discrepant in spite that the observations were made simultaneously, in quite similar conditions and with almost identical instruments (Noël: 2004, Astron. Astrophys. 413, 725). However, we show here that most of astrolabe discrepancies may be due to data analysis biased by theoretical preconceptions, by empirical results which without scientific arguments are considered as canonical references and by over interpretations of casual agreements between visual and CCD astrolabe results.  相似文献   

12.
Results are presented from a study of solar radius measurements taken with the solar astrolabe at the TUBITAK National Observatory (TUG) over seven years, 2001–2007. The data series with standard deviation of 0.35 arcsec shows the long-term variational trend with 0.04 arcsec/year. On the other hand, the data series of solar radius are compared with the data of sunspot activity and H-α flare index for the same period. Over the seven year trend, we have found significant linear anti-correlations between the solar radius and other indicators such as sunspot numbers, sunspot areas, and H-α flare index. While the solar radius displays the strongest anti-correlation (−0.7676) with sunspot numbers, it shows a significant anti-correlation of −0.6365 with sunspot areas. But, the anti-correlation between the solar radius and H-α flare index is found to be −0.4975, slightly lower than others. In addition, we computed Hurst exponent of the data sets ranging between 0.7214 and 0.7996, exhibiting the persistent behavior for the long term trend. In the light of the strong correlations with high significance, we may suggest that there are a causal relationship between the solar radius and solar time series such as sunspot activity and H-α flare index.  相似文献   

13.
The results of the solar radius measurements from February 2001 to November 2003 with the solar astrolabe at the TUBITAK National Observatory are presented. The mean semi-diameter for the period, corrected for systematic effects such as the Fried parameter and the zenith distance, is found to be 959.29 ± 0.01 arc sec. A comparison of the monthly averages of the solar radius with the monthly means of sunspot numbers shows that the semi-diameter of the Sun increases with an amplitude of 0.017 arc sec per year in opposite phase with solar cycle 23.  相似文献   

14.
Temporal variations of the structure and the rotation rate of the solar tachocline region are studied using helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) obtained during the period 1995–2000. We do not find any significant temporal variation in the depth of the convection zone, the position of the tachocline or the extent of overshoot below the convection zone. No systematic variation in any other properties of the tachocline, like width, etc., is found either. The possibility of periodic variations in these properties is also investigated. Time-averaged results show that the tachocline is prolate with a variation of about 0.02 R in its position. Neither the depth of the convection zone nor the extent of overshoot shows any significant variation with latitude.  相似文献   

15.
We provide a quantitative assessment of the probability distribution function of the concentration parameter of galaxy clusters. We do so by using the probability distribution function of halo formation times, calculated by means of the excursion set formalism, and a formation redshift-concentration scaling derived from results of N -body simulations. Our results suggest that the observed high concentrations of several clusters are quite unlikely in the standard Λ cold dark matter (ΛCDM) cosmological model, but that due to various inherent uncertainties, the statistical range of the predicted distribution may be significantly wider than commonly acknowledged. In addition, the probability distribution function of the Einstein radius of A1689 is evaluated, confirming that the observed value of  ∼45 ± 5 arcsec  is very improbable in the currently favoured cosmological model. If, however, a variance of ∼20 per cent in the theoretically predicted value of the virial radius is assumed, then the discrepancy is much weaker. The measurement of similarly large Einstein radii in several other clusters would pose a difficulty to the standard model. If so, earlier formation of the large-scale structure would be required, in accord with predictions of some quintessence models. We have indeed verified that in a viable early dark energy model large Einstein radii are predicted in as many as a few tens of high-mass clusters.  相似文献   

16.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

17.
We present meridional flow measurements of the Sun using a novel helioseismic approach for analyzing SOHO/MDI data in order to push the current limits in radial depth. Analyzing three consecutive months of data during solar minimum, we find that the meridional flow is as expected poleward in the upper convection zone, turns equatorward at a depth of around 40 Mm (∼ 0.95 R), and possibly changes direction again in the lower convection zone. This may indicate two meridional circulation cells in each hemisphere, one beneath the other. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

19.
We report the results of a near-infrared survey for long-period variables in a field of view of 20× 30 arcmin2 towards the Galactic Centre (GC). We have detected 1364 variables, of which 348 are identified with those reported in Glass et al. We present a catalogue and photometric measurements for the detected variables and discuss their nature. We also establish a method for the simultaneous estimation of distances and extinctions using the period–luminosity relations for the JHK s bands. Our method is applicable to Miras with periods in the range 100–350 d and mean magnitudes available in two or more filter bands. While J band means are often unavailable for our objects because of the large extinction, we estimated distances and extinctions for 143 Miras whose H - and   K s  -band mean magnitudes are obtained. We find that most are located at the same distance to within our accuracy. Assuming that the barycentre of these Miras corresponds to the GC, we estimate its distance modulus to be  14.58 ± 0.02 (stat.) ± 0.11 (syst.) mag  , corresponding to  8.24 ± 0.08 (stat.) ± 0.42 (syst.) kpc  . We have assumed the distance modulus to the Large Magellanic Cloud to be 18.45 mag, and the uncertainty in this quantity is included in the above systematic error. We also discuss the large and highly variable extinction. Its value ranges from 1.5 mag to larger than 4 mag in     except towards the thicker dark nebulae and it varies in a complicated way with the line of sight. We have identified mid-infrared counterparts in the Spitzer /IRAC catalogue of Ramírez et al. for most of our variables and find that they follow rather narrow period–luminosity relations in the 3.6–8.0 μm wavelength range.  相似文献   

20.
We report on the identification of cyclical changes in the orbital period of the eclipsing dwarf novae V2051 Ophiuchi and V4140 Sagittarii. We used sets of white dwarf mid-eclipse timings to construct observed-minus-calculated diagrams covering, respectively, 25 and 16 yr of observations. The V2051 Oph data present cyclical variations that can be fitted by a linear plus sinusoidal function with period of  22 ± 2 yr  and amplitude of  17 ± 3 s  . The statistical significance of this period by an F-test is larger than 99.9 per cent. The V4140 Sgr data present cyclical variations of similar amplitude and period of  6.9 ± 0.3 yr  which are statistically significant at the 99.7 per cent level. We derive upper limits for secular period changes of     and     for V2051 Oph and V4140 Sgr, respectively.
We have combined our results with those in the literature to construct a diagram of the amplitude versus period of the modulation for a sample of 11 eclipsing cataclysmic variables (CVs). If the cyclical period changes are the consequence of a solar-type magnetic activity cycle in the secondary star, then magnetic activity is a widespread phenomenon in CVs, being equally common among long- and short-period systems. This gives independent evidence that the magnetic field (and activity) of the secondary stars of CVs do not disappear when they become fully convective. We also find that the fractional cycle period changes of the short-period CVs are systematically smaller than those of the long-period CVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号