首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient surveys of the Gulf of Alaska, from 1997 through 1999, show that coastal waters of British Columbia and southern Alaska experienced nitrate depletion each spring and summer. Through the 1997–1998 El Niño, waters with less than 1 μM NO3 covered 250,000 km2 area greater than 1999. Silicate levels as low as 0.2 μM were observed in coastal waters, suggesting that diatom growth may have been nutrient limited both in 1998 and 1999. Detailed sampling off the southern coast of British Columbia revealed that 1998 nitrate levels were only half the average of that during the 1970s winter, were depleted 1 month earlier in spring and remained low throughout the summer. Satellite images show that, compared to 1997 and 1999, chlorophyll levels were much lower in the spring of 1998 throughout the coastal waters of the Gulf of Alaska. Conditions changed dramatically during the 1999 La Niña, with ocean-mixed layer depths increasing by 20 m in winter and 40 m in spring when compared to that during 1997–1998 El Niño. Winter nutrient levels increased and summer upwelling returned. Over the past several decades, a trend towards greater stratification of coastal waters appears to be affecting the supply of nutrients to the mixed layer. The effects of stratification were especially obvious during the 1998 El Niño.  相似文献   

2.
The evolution and decay of El Niño 1997–8 was observed in coastal waters off Oregon in a sequence of cruises along 44.6°N from the coast to more than 150 km offshore. Hydrographic observations were made during eleven cruises between July 1997 and April 1999 at stations on the Newport Hydrographic Line, which had been occupied regularly from 1961 to 1971. The data from the earlier decade provide a basis for defining ‘normal’ conditions and allow comparisons with the recent El Niño in terms of T, S, spiciness and geostrophic velocity. Independent of El Niño, the ocean in July 1997 was already anomalously warm offshore of 50 km and above 100 m. By September 1997 there were unambiguous indications of El Niño: isotherms and isohalines sloped down toward the coast indicating poleward flow over shelf and slope, and anomalously spicy water was present at the shelf-break. In November 1997 and February 1998 shelf-break waters were even warmer, and there was strong poleward flow inshore of 100 km, extending to depths greater than 200 m. The April 1998 section closely resembled that of April 1983 (another El Niño year) but by June 1998 the anomalies were mostly gone. November 1998 was near normal and the sections from subsequent cruises resemble the mean sections from 1961–1971.Four cruises between November 1997 and November 1998 included sampling at several latitudes between 38° and 45°N. As expected, these sections show significant alongshore gradients, but also a surprising degree of homogeneity in the anomalous features associated with El Niño (in the temperature, salinity, spiciness and geostrophic velocity fields). The anomalous signature of El Niño was stronger at its winter peak in 1998 than in 1983, but the signature in the temperature and spiciness fields, and in coastal sea level, did not persist as long as in 1983. By April 1999, the coastal ocean from 38°N to 45°N was significantly colder than it had been in April 1984.  相似文献   

3.
The IMECOCAL Program began in 1997, with the objective of sampling plankton systematically in the Mexican region of the California Current. We present results of chlorophyll a concentrations and zooplankton displacement volumes for the eight cruises from September 1997 to October 1999. The abundance of 22 zooplankton groups was also analyzed for the first four cruises. The response of plankton to the 1997–1998 El Niño was atypical. From September 1997 to January 1998, chlorophyll a and zooplankton volume were at typical values (median integrated chlorophyll was 27 mg/m2 and zooplankton 100 ml/1000 m3 in 9801/02). After the peak of El Niño, the system shifted to cooler conditions. Integrated chlorophyll gradually increased to a median of 77 mg/m2 in April 1999. In contrast, zooplankton volumes decreased from October 1998 onward, despite favorable phytoplankton availability in 1999. Zooplankton structure was dominated by copepods and chaetognaths through the ENSO cycle, but interannual changes were evident. In the fall of 1997 there was a higher proportion of copepods, chaetognaths, and other minor groups, while the fall of 1998 zooplankton was richer in salps and ostracods. Historical data from previous Baja California CalCOFI cruises indicated that zooplankton volumes measured during the IMECOCAL cruises were above the long-term mean for the period 1951–1984. This suggests a differential response of plankton to the El Niño of 1997–1998 compared to the El Niño of 1957–1959. Regional differences in zooplankton volumes were also found, with central Baja California having 41% higher biomass than northern Baja California. Volumes from both regions were larger than those recorded by CalCOFI off southern California during 1997–1998, but the situation was reversed in 1999. The higher biomasses in the 1997–1998 El Niño can be attributed to high abundance of salps, which showed an affinity with warm, saline water.  相似文献   

4.
Nutrient and chlorophyll concentrations were measured in January 1997, 1998 and 1999 in the Gulf of the Farallones, CA at locations stretching north/south from Point Reyes to Half Moon Bay, and seaward from the Golden Gate to the Farallon Islands. The cruises were all carried out during periods of high river flow, but under different climatological conditions with 1997 conditions described as relatively typical or ‘neutral/normal’, compared to the El Niño warmer water temperatures in 1998, and the cooler La Niña conditions in 1999. Near-shore sea-surface temperatures ranged from cold (9.5–10.5°C) during La Niña 1999, to average (11–13°C) during 1997 to warm (13.5–15°C) during El Niño 1998. Nutrients are supplied to the Gulf of the Farallones both from San Francisco Bay (SFB) and from oceanic sources, e.g. coastal upwelling near Point Reyes. Nutrient supplies are strongly influenced by the seasonal cycle of fall calms, with storms (commencing in January), and the spring transition to high pressure and northerly upwelling favorable winds. The major effect of El Niño and La Niña climatic conditions was to modulate the relative contribution of SFB to nutrient concentrations in the coastal waters of the Gulf of the Farallones; this was intensified during the El Niño winter and reduced during La Niña. During January 1998 (El Niño) the oceanic water was warm and had low or undetectable nitrate, that did not reach the coast. Instead, SFB dominated the supply of nutrients to the coastal waters. Additionally, these data indicate that silicate may be a good tracker of SFB water. In January, delta outflow into SFB produces low salinity, high silicate, high nitrate water that exits the bay at the Golden Gate and is advected northward along the coast. This occurred in both 1997 and 1998. However during January 1999, a La Niña, this SFB feature was reduced and the near-shore water was more characteristic of high salinity oceanic water penetrated all the way to the coast and was cold (10°C) and nutrient rich (16 μM NO3, 30 μM Si(OH)4). January chlorophyll concentrations ranged from 1–1.5 μg l−1 in all years with the highest values measured in 1999 (2.5–3 μg l−1) as a result of elevated nutrients in the area. The impact of climatic conditions on chlorophyll concentrations was not as pronounced as might be expected from the high temperatures and low nutrient concentrations measured offshore during El Niño due to the sustained supply of nutrients from the Bay supporting continued primary production.  相似文献   

5.
6.
We report results of ecosystem studies in Monterey Bay, California, during the summer upwelling periods, 1996–99, including impacts of El Niño 1997–98 and La Niña 1999. Random-systematic line-transect surveys of marine mammals were conducted monthly from August to November 1996, and from May to November 1997–99. CTDs and zooplankton net tows were conducted opportunistically, and at 10 predetermined locations. Hydroacoustic backscatter was measured continuously while underway to estimate prevalence of zooplankton, with emphasis on euphausiids, a key trophic link between primary production and higher trophic level consumers.The occurrences of several of the California Current’s most common cetaceans varied among years. The assemblage of odontocetes became more diverse during the El Niño with a temporary influx of warm-water species. Densities of cold-temperate Dall’s porpoise, Phocoenoides dalli, were greatest before the onset of El Niño, whereas warm-temperate common dolphins, Delphinus spp., were present only during the warm-water period associated with El Niño. Rorqual densities decreased in August 1997 as euphausiid backscatter was reduced. In 1998, as euphausiid backscatter slowly increased, rorqual densities increased sharply to the greatest observed values. Euphausiid backscatter further increased in 1999, whereas rorqual densities were similar to those observed during 1998. We hypothesize that a dramatic reduction in zooplankton biomass offshore during El Niño 1997–98 led to the concentration of rorquals in the remaining productive coastal upwelling areas, including Monterey Bay. These patterns exemplify short-term responses of cetaceans to large-scale changes in oceanic conditions.  相似文献   

7.
A zonal hydrographic section along 44.65°N, from the coast of Oregon to 300 km offshore, was occupied regularly (at least seasonally) from 1961 to 1971 and then sporadically until recently. Regular monitoring of this section to 160 km offshore resumed in July 1997 as part of the GLOBEC Long Term Observational Program; the recent data provide observations in Oregon coastal waters of El Niño 1997–98 and La Niña conditions that followed. The complete seasonal data from the decade 1961–1971 provide a basis for comparison with the recent temperature and salinity sections, steric height profiles, geostrophic velocity, and water mass characteristics. These data, and sporadic observations in intervening years, allow us to compare conditions during several ENSO events with the recent event and to search for evidence of climate change. The PFEL Coastal Upwelling Index, sea level from the University of Hawaii Sea Level Center, the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and outflow from the Columbia River are used to distinguish local and remote causes of variability in physical oceanographic conditions off Oregon. The sequence of El Niño/La Niña/El Niño in 1963–66, during a cool phase of PDO, provides a comparison to El Niño/La Niña of 1997–2000. El Niño in 1982–83 and 1997–98, during a warm phase of PDO, caused the largest oceanographic anomalies in the 40 years. The comparison indicates warming of the coastal ocean off Oregon and suggests a modulation of ENSO effects by PDO. Such modulation would mask evidence for secular climate change in our 40-year oceanographic data series.  相似文献   

8.
The development of the strongest El Niño event on record in the equatorial Pacific in 1997–1998 and the rapid transition to strong La Niña conditions in 1998–1999 had a large impact on the physical and biological environment of the West Coast. We investigate the evolution of the physical structure and circulation dynamics of the southern California Current System (CCS) during this period based on hydrographic data collected on 25 cruises over a 45-month period (February 1996–October 1999). The El Niño period was characterized by a significant increase in dynamic height, extreme water mass characteristics, a strengthening and broadening of the poleward nearshore flow, and a temporary reversal of net alongshore transport. By early 1999, conditions in the CCS had reversed. The data suggest that remotely driven forcing (propagating oceanic waves) contributed to the anomalies observed during the El Niño period, while the cool-water conditions of 1999 were most likely a result of anomalous local atmospheric forcing.  相似文献   

9.
Several species of migratory, warm-water, oceanic fishes invaded Oregon waters during the summer of 1997. Also, the jumbo squid (Dosidicus gigas), common in the eastern tropical Pacific, was reported for the first time in 1997 and was caught in large numbers. The occurrence of these oceanic nekton was associated with inshore advection of anomalously warm water. During 1998, after arrival of the main El Niño signal, some warm-water coastal fishes appeared off Oregon. However, unlike observations off California, fewer species of warm-water coastal fishes were noted during the 1997–98 El Niño than during the 1982–83 El Niño.  相似文献   

10.
An eddy-resolving numerical simulation for the Peru–Chile system between 1993 and 2000 is analyzed, mainly for the 1997–1998 El Niño. Atmospheric and lateral oceanic forcings are realistic and contain a wide range of scales from days to interannual. The solution is validated against altimetric observations and the few in situ observations available. The simulated 1997–1998 El Niño closely resembles the real 1997–1998 El Niño in its time sequence of events. The two well-marked, sea-level peaks in May–June and November–December 1997 are reproduced with amplitudes close to those observed. Other sub-periods of the El Niño seem to be captured adequately. Simple dynamical analyses are performed to explain the 1997–1998 evolution of the upwelling in the model. The intensity of the upwelling appears to be determined by an interplay between alongshore, poleward advection (related to coastal trapped waves) and wind intensity, but also by the cross-shore geostrophic flow and distribution of the water masses on a scale of 1000 km or more (involving Rossby waves westward propagation and advection from equatorial currents). In particular, the delay of upwelling recovery until fall 1998 (i.e., well after the second El Niño peak) is partly due to the persistent advection of offshore stratified water toward the coast of Peru. Altimetry data suggest that these interpretations of the numerical solution also apply to the real ocean.  相似文献   

11.
The physical, chemical and biological perturbations in central California waters associated with the strong 1997–1998 El Niño are described and explained on the basis of time series collected from ships, moorings, tide gauges and satellites. The evolution of El Niño off California closely followed the pattern observed in the tropical Pacific. In June 1997 an anomalous influx of warm southerly waters, with weak signatures on coastal sea level and thermocline depth, marked the onset of El Niño in central California. The timing was consistent with propagation from the tropics via the equatorial and coastal wave-guide. By late 1997, the classical stratified ocean condition with a deep thermocline, high sea level, and warm sea surface temperature (SST) commonly associated with El Niño dominated the coastal zone. During the first half of 1998 the core of the California Current, which is normally detected several hundred kilometers from shore as a river of low salinity, low nutrient water, was hugging the coast. High nutrient, productive waters that occur in a north–south band from the coast to approximately 200 km offshore during cool years disappeared during El Niño. The nitrate in surface waters was less than 20% of normal and new production was reduced by close to 70%. The La Niña recovery phase began in the fall of 1998 when SSTs dropped below normal, and ocean productivity rebounded to higher than normal levels. The reduction in coastal California primary productivity associated with El Niño was estimated to be 50 million metric tons of carbon (5×1013 g C). This reduction certainly had deleterious effects on zooplankton, fish, and marine mammals. The 1992–1993 El Niño was more moderate than the 1997–1998 event, but because its duration was longer, its overall chemical and biological impact may have been comparable. How strongly the ecosystem responds to El Niño appears related to the longer-term background climatic state of the Pacific Ocean. The 1982–1983 and 1992–1993 El Niños occurred during the warm phase of the Pacific Decadal Oscillation (PDO). The PDO may have changed sign during the 1997–1998 El Niño, resulting in weaker ecological effects than would otherwise have been predicted based on the strength of the temperature anomaly.  相似文献   

12.
Nutrient conditions off central California during the 1997–98 El Niño are described. Data were collected on 11 cruises from March 1997 to January 1999 along a hydrographic section off central California, as well as every two weeks at a coastal station in Monterey Bay. Perturbations associated with El Niño are shown as anomalies of thermohaline and nutrient distributions along this section. The anomalies were obtained by subtracting seasonal averages for the period from April 1988 to April 1991 from the 1997–98 observations. The first indications of El Niño conditions (high sea levels) were observed at Monterey between late May and early June 1997, but the coastal nutricline did not begin to deepen until August 1997. It reached maximum depth of 130 dbar in January 1998 at the time that maximum sea level anomalies were observed. During this period: (1) the highest subsurface temperature anomalies coincided with subsurface nutrient anomaly minima at the depth of the pycnocline; (2) southern saline and nutrient-poor waters occupied the upper 80 dbar of the water column along the entire section; and (3) nitrate levels were close to zero in the euphotic zone, collapsing the potential new primary production in the coastal domain. At the end of February 1998, the nutricline shoaled to 40 dbar at the coast although it remained anomalously deep offshore. Higher temperatures and lower nutrient levels were observed for the entire section through August 1998 although in contrast with the previous winter, there was a strong freshening mainly due to an onshore movement of subarctic waters.  相似文献   

13.
Surface chlorophyll (CHL) measured at the Scripps Pier in the Southern California Bight (SCB) for 18 years (1983–2000) reveals that the spring bloom occurs with irregular timing and intensity each year, unlike sea-surface temperature (SST), which is dominated by a regular seasonal cycle. In the 1990s, the spring bloom occurred earlier in the year and with larger amplitudes compared to those of the 1980s. Seasonal anomalies of the Pier CHL have no significant correlation with local winds, local SST, or upwelling index, which implies that classical coastal upwelling is not directly responsible for driving chlorophyll variations in nearshore SCB.The annual mean Pier CHL exhibits an increasing trend, whereas the Pier SST has no evident concomitant trend during the CHL observation period. The interannual variation of the Pier CHL is not correlated with tropical El Niño or La Niña conditions over the entire observing period. However, the Pier CHL was significantly influenced by El Nino/Southern Oscillation during the 1997/1998 El Niño and 1998/1999 La Niña transition period. The Pier CHL is highly coherent at long periods (3–7 years) with nearby offshore in situ surface CHL at the CalCOFI (California Cooperative Fisheries Investigations) station 93.27.  相似文献   

14.
Oceanographic conditions off Central California were monitored by means of a series of 13 hydrographic cruises between February 1997 and January 1999, which measured water properties along an oceanographic section perpendicular to the California Coast. The 1997–98 El Niño event was defined by higher than normal sea levels at Monterey, which began in June 1997, peaked in November 1997, and returned to normal in March 1998. The warming took place in two distinct periods. During June and July 1997, the sea level increased as a result of stronger than normal coastal warming below 200 dbars and within 100 km of the coast, which was associated with poleward flow of saltier waters. During this period, deeper (400–1000 dbar) waters between 150–200 km from shore were also warmed and became more saline. Subsequently, sea level continued to rise through January 1998, mostly as a result of the warming above 200 dbars although, after a brief period of cooling in September 1997, waters below 200 dbar were also warmer than normal during this period. This winter warm anomaly was also coastally trapped, extending 200 km from shore and was accompanied by cooler and fresher water in the offshore California current. In March and April 1998, sea level dropped quickly to normal levels and inshore waters were fresher and warmer than the previous spring and flowed southward.The warming was consistent with equatorial forcing of Central California waters via propagation of Kelvin or coastally-trapped waves. The observed change in heat content associated with the 1997–98 El Niño was the same as that observed during the previous seasonal cycle. The warming and freshening events were similar to events observed during the 1957–58 and 1982–83 El Niños.  相似文献   

15.
This paper examines the oceanic response off Baja California, Mexico, to the 1997–1998 El Niño and the transition to La Niña conditions. The data presented were gathered during seven cruises over a grid based on the CalCOFI station plan, from lines 100–130, out to station 80. T–S diagrams with data obtained during the peak phase of El Niño, demonstrate that warmer and saltier (spicier) than normal conditions prevailed in the upper 600 m over this region. Temperature and salinity anomalies calculated for CalCOFI line 120 revealed waters near the coast at 50 m depth to be up to 8.7 °C warmer and S=0.8 saltier than the climatology during October 1997. These large anomalies persisted through January 1998, with some slight diminution in the magnitudes near the surface. This study suggests that anomalously warm and salty waters were fed from a source of spicy water to the southwest, identified as Subtropical Surface Water (StSW), and that low-salinity Tropical surface waters (TSW) were blocked to the southeast in the vicinity of the tip of the Peninsula. Subsurface waters associated with the California undercurrent (CU), fed from the Eastern Tropical Pacific (ETP), were also warmer and saltier than normal, and indicate a significant expansion in volume of the CU, presumably a result of intensification of poleward flow at depth. We postulate that the well defined near-surface and deep poleward flows in the study area reflect anomalous large-scale cyclonic circulation affecting the flow in the southeastern region of the North Pacific subtropical gyre east of 125°W. Following the El Niño event, warm and salty upper waters retreated to latitudes south of Punta Eugenia. With the return to normal and cooler conditions, equatorward flow over the sampling grid predominated with an increased meandering and mesoscale activity. Transition to La Niña conditions would have been associated with re-establishment of normal anticyclonic flow in the southeastern quadrant of the Pacific subtropical gyre.  相似文献   

16.
Changes in the sea surface heights (SSH) and geostrophic currents along the eastern boundaries of the Pacific (North, Central and South America) are examined during the 1997–1998 El Niño using altimeter data and proxy winds. These show that ‘symmetric’ SSH signals left the equator and propagated into both Hemispheres in two episodes, with primary periods of high equatorial SSH during May–July and October–December 1997. These are the ‘distant signals’ from the mid-latitude perspective. As the signals spread poleward in each Hemisphere, their loss of symmetry demonstrates the degree to which they were altered by topographic features, local winds, and/or local currents. The first four EOFs are calculated for 2-D SSH fields in 10° wide strips along the eastern margins (60°N–60°S) and extending out along the equator from the coast to 110°W. These account for approximately 40% of the overall variability and represent the main features of the seasonal cycles and El Niño interannual variability. Snapshots of the 2-D SSH fields depict the structure of the El Niño signal at different phases of its evolution.  相似文献   

17.
From late 1995 through early 2001, three major interannual climate events occurred in the tropical Pacific; the 1995–97 La Niña (LN), 1997–98 El Niño (EN), and 1998–2001 LN. We analyze atmospheric and upper oceanic anomalies in the northeast Pacific (NEP) during these events, and compare them to anomalies both elsewhere in the north and tropical Pacific, and to typical EN and LN anomaly patterns. The atmospheric and oceanic anomalies varied strongly on intraseasonal and interannual scales. During the 1995–97 LN and 1997–98 EN, the Northeast Pacific was dominated by negative SLP and cyclonic wind anomalies, and by upper ocean temperature and sea surface height (SSH) anomalies. The latter were positive along the North American west coast and in the NEP thermal anomaly pool (between Hawaii, Vancouver Island, and Baja California), and negative in the central north Pacific. This atmospheric/oceanic anomaly pattern is typical of EN. An eastward shift in the atmospheric teleconnection from east Asia created EN-like anomalies in the NEP during the 1995–97 LN, well before the 1997–98 EN had begun. The persistence of negative sea-level pressure (SLP) and cyclonic wind anomalies in the NEP during the 1997–98 EN intensified pre-existing upper oceanic anomalies. Atmospheric anomalies were shifted eastward during late 1996–early 1998, leading to a similar onshore shift of oceanic anomalies. This produced exceptionally strong positive upper ocean temperature and SSH anomalies along the west coast during the 1997–98 EN, and explains the unusual coastal occurrences of several species of large pelagic warm-water fishes. The growth and eastward shift of these pre-existing anomalies does not appear to have been linked to tropical Pacific EN anomalies until late 1997, when a clear atmospheric teleconnection between the two regions developed. Prior to this, remote atmospheric impacts on the NEP were primarily from east Asia. As the 1998–2001 LN developed, NEP anomalies began reversing toward the typical LN pattern. This led to predominantly negative SLP and cyclonic wind anomalies in the NEP, and upper ocean temperature and SSH anomalies that were mainly negative along the west coast and positive in the central north Pacific. The persistence of these anomalies into mid-2001, and a number of concurrent biological changes in the NEP, suggest that a decadal climate shift may have occurred in late 1998.During 1995–2001, NEP oceanic anomalies tracked the overlying atmospheric anomalies, as indicated by the maintenance of a characteristic spatial relationship between these anomalies. In particular, wind stress curl and SSH anomalies in the NEP maintained an inverse relationship that strengthened and shifted eastward toward the west coast during late 1996–early 1998. This consistent relationship indicates that anomalous Ekman transport driven by regional atmospheric forcing was an important contributor to temperature and SSH anomalies in the NEP and CCS during the 1997–98 EN. Other studies have shown that coastal propagations originating from the tropical Pacific also may have contributed to coastal NEP anomalies during this EN. Our results indicate that at least some of this coastal anomaly signal may have been generated by regional atmospheric forcing within the NEP.  相似文献   

18.
Moored, survey, and drifter observations are used to describe the evolution of temperature, sea level, velocity and salinity from 1997 to 1998 over the California shelf, between San Luis Obispo Bay and the eastern entrance to the Santa Barbara Channel. The dominant event during this time was the 1997–1998 El Niño. Its relation to background seasonal and interannual variability depended on which property is considered. Subsurface temperature and local sea level showed extreme anomalies between March 1997 and October 1998. Three distinct peaks occurred. The first two are associated with the regional response to El Niño, while the cause of the third remains unclear. The first peaked in June 1997, and decayed until August. The main El Niño peak reached maximum amplitude between November 1997 and January 1998. After the collapse of the regional El Niño anomaly in February 1998, a final peak occurred locally during the summer of 1998.The central result presented here concerns the spatial structure of temperature during these events. The initial peak was surface intensified and was barely detectable at 45 m. Its amplitude varied with position along the coast, decaying with distance north. The main peak showed a strong signal down to at least 200 m. The amplitude and timing of temperature anomalies during this event were depth dependent. The largest absolute amplitudes relative to seasonal cycles were in excess of 4 °C and occurred between 45 and 65 m depth. The anomalies reached their maximum values at later time with increasing depth, between October 1997 and January 1998. The amplitude of this main peak was comparable at all mooring sites. The final peak in August 1998 had a comparable amplitude at all mooring sites to a depth of 100 m. Temperature increases during the three events were accompanied by a corresponding rise in sea level.The El Niño signals in currents and salinity are more difficult to distinguish from background variability than those in temperatures and sea level. However, stronger than average poleward flow was observed at the eastern entrance to the Santa Barbara Channel between 5 and 100 m depth for most of 1997, and there are indications for greater than usual poleward flow over the Santa Maria Basin in fall 1997. Surface drifter evidence, although qualitative, also suggests greater than usual poleward displacement in November 1997 relative to other years. Along with increased temperature, survey observations of salinity suggest changes to the regional temperature–salinity relation during November 1997 with greater than usual salinity at temperatures below 12 °C.  相似文献   

19.
Euphausiids are an important component of the zooplankton in boundary current upwelling regions, including the Pacific Northwest continental margin. Many aspects of euphausiid distribution and ecology in this region are well known. However, some features of their spatial and temporal distribution are less understood:
• How and why euphausiids aggregate near the shelf-break upwelling center.
• How and why there is (within an alongshore band of high abundance of all stages) spatial segregation of adults and larvae.
• Why, despite spatial association with upwelling, euphausiid abundance off Vancouver Island is weakly or negatively correlated at interannual time scales with upwelling intensity.
To address these, we made km-resolution surveys of adult, juvenile, and larval euphausiid horizontal distributions, water properties, and currents across the Vancouver Island shelf break in mid-to-late spring of two successive years. Survey timing was before (1997) and after (1998) the spring transition to upwelling conditions, and near the annual spring reproductive peak. In both years, early developmental stages occupied an alongshore band that was offset from the late juveniles and adults. The direction of the offset differed between the two surveys. Early life history stages (larvae and early juveniles) were shoreward of adults in April 1997 (downwelling-conditions), but seaward of adults in May 1998 (upwelling-conditions). Separation distance (order 5–10 km) was consistent with expected differences in cumulative wind-driven (and vertically-sheared) cross-shore transport of surface-dwelling larvae and early juveniles vs. transport of diel migratory late juveniles and adults. Separation direction was consistent with recent history of winds and Ekman transport—shoreward during poleward winds, and seaward into blue water (and usually into a strong equatorward current) during equatorward winds.  相似文献   

20.
During the 1997/1998 El Niño event, extensive oceanic temperature profiles were taken off the coast of California in January and February 1998 using Airborne Expendable Bathythermographs (AXBTs). These AXBT measurements are compared with altimetry-based upper-ocean temperature estimates using TOPEX and ERS satellite altimetry data. The altimetry-based temperature estimates are well correlated with the AXBT data, in particular when combining the two satellite data sets together to form a blended altimeter temperature estimate. Both the AXBT and altimetry data show that the nearshore coastal El Niño signal differed from that further offshore. The AXBT data show that near shore, the warm anomalies extended to much greater depths and had greater amplitude. A time series of the satellite-derived layer-averaged temperatures, averaged separately over the nearshore and offshore halves of the AXBT analysis domain, also shows a larger El Niño signal in the nearshore half. The role of local atmospheric forcing of the coastal oceanic temperature anomalies is analyzed using NCEP reanalysis and coastal upwelling data sets. The forcing terms include Ekman pumping, radiation, surface heat fluxes, precipitation, and alongshore wind stresses that drive coastal upwelling (expressed as a coastal downwelling index, CDI). The temperature forcing from all of the terms except the CDI anomalies are small. The CDI anomalies can explain most of the slowly varying temperature changes that occur near the coast during a two-year period spanning the El Niño event, as well as some of the larger amplitude, rapid (monthly) warming episodes that appear to be part of the El Niño signal. Several distinct rapid warming episodes, however, are not correlated with the CDI anomalies, and therefore we conclude that the nearshore El Niño signal originates from a combination of both a remote oceanic pathway and local atmospheric forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号