首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of the wind forcing temporal resolution in the central Mediterranean Sea is addressed using a numerical ocean circulation model. The model uses interactive surface fluxes based on the ERA-Interim 6-hourly atmospheric reanalyses except for the 10 m wind for which ERA5 hourly reanalyses are used. Additional temporal resolution (2, 3, 6, 12 and 24 h) wind sets are deduced from the ERA5 hourly data. An ensemble of simulations (six members) is then performed where only the temporal resolution of the wind forcing is changed. The impact of the temporal resolution is studied based on this set of simulations. The dependence of the surface wind stress and heat flux on the wind resolution is derived based on an analytical expression where the Weibull distribution is used to characterise the probability density function of the wind speed. Results from the analytical model are found close to those from the numerical model when a linear increase of the exchange coefficients with the wind speed is considered. Power input into the sea and surface heat loss both increase with the increase of the temporal resolution but at lower rates when approaching hourly forcing values. The increase of the latent heat loss at these high resolutions is small (~−0.8 Wm-2) but still important, around 10–20% the Mediterranean basin heat budget (−5 to −7 Wm-2). The increase of the wind forcing temporal resolution decreases the sea surface temperature (SST) and increases the sea surface salinity (SSS) with largest values in the shallow area of the Gulf of Gabès (eastern coast of Tunisia). A decrease of SSS is however noticed in some areas mainly northwest of the Tunisia coast. Hydrographical changes are also found in the Tunisia-Sicily channel. They are characterised by mesoscale structures with no remarkable change of the major water veins.  相似文献   

2.
3.
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden–Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.  相似文献   

4.
The performance of one-way and two-way nesting techniques is assessed in this study using model results produced by a regional ocean circulation modelling system for the eastern Canadian shelf. The assessment is made in terms of dynamical consistency between the parent model (PM) and child model (CM), representation of general circulation features, and reduction of numerical noise generated during the interaction of the PM and CM. It is demonstrated that the feedback from the CM to the PM in numerical experiments using two-way nesting ensures that the large-scale circulation produced by the PM and CM be dynamically consistent over the region where the two model domains overlap. In comparison with one-way nesting, two-way nesting leads to a better representation of coastal currents over the Gulf of St. Lawrence and the Scotian Shelf and improves the large-scale circulation in the results produced by the PM. This study also examines an alternative two-way nesting technique based on the semi-prognostic method in which differences between the PM and CM densities are used to adjust the horizontal momentum balance in the PM. Model results demonstrate the advantage of the semi-prognostic method in eliminating numerical noise during the feedback from the CM to PM while ensuring dynamical consistency between the two model components.  相似文献   

5.
The influences of horizontal advection and horizontal diffusion on the variability of sea surface salinity in stochastically forced systems are investigated. Basic ideas are developed using a two dimensional box model and then extended to a more realistic three dimensional ocean general circulation model. It is shown that, in the absence of advection and diffusion, the ocean response is essentially that predicted by Taylor's random walk model. Advection becomes important when the advective time scale is less than the response time of the mixed layer to the stochastic forcing. Advection of parcels from regions of upwelling into regions of downwelling limits their exposure time to the stochastic forcing and thus the maximum attainable variance in the system (variance increases linearly with time). Regions of upwelling and downwelling may be introduced through the thermohaline overturning circulation or by the wind driven Ekman transport, depending on the specific model configuration. Horizontal diffusion is found to be important when the diffusive time scale is less than the mixed layer response time. The primary role of diffusion is to reduce the effective stochastic forcing through rapid mixing of uncorrelated surface forcing events. Because sea surface salinity does not have a negative feedback with the atmosphere, it is more strongly influenced by weak horizontal processes than sea surface temperature (SST). Accurate knowledge of the stochastic forcing amplitude, decorrelation time, and length scale and distribution are critical to model the variance of sea surface salinity. Aspects of the ocean model which strongly influence the variability of sea surface salinity include the surface velocity, horizontal diffusivity, and the mixed layer depth. Implications on modeling of the ocean and coupled ocean-atmosphere systems are discussed.  相似文献   

6.
We present a case study of the generation of a cold filament rooted off the southwestern edge of the Strait of Gibraltar (Atlantic side) during the summer of 2000. The event is successfully simulated using high-resolution atmospheric and oceanic numerical models. It is shown that a sharp filament may develop oceanwards with little modification of the Atlantic inflow into the Mediterranean, contrary to usual expectations. The filament is essentially driven by the surface layer response to Gap winds occurring during Levanter conditions. The easterly wind funnelling in the Strait generates a strong wind jet and intense wind curl which impacts the oceanic surface layer through Ekman pumping and mixing processes. The generation and fate of the filament is very similar to the Gulf of Tehuantepec case, where strong Gap wind events produce asymmetric deformation and erosion of the thermocline that tends to favour anticyclonic mesoscale circulations. Our observations and model results from both realistic and idealized experiments suggest that similar phenomena are present in the Gulf of Cadiz, but they are altered by the persisting Atlantic inflow, so that the response to Gap winds is not as dramatic.  相似文献   

7.
A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km mesh covers Goa and the surrounding region. Simulations have been carried out for three different seasons—northeast (NE) monsoon, transition period and southwest (SW) monsoon with appropriate physics options to understand the coastal wind system. The simulated wind speed and direction match well with the observations. The model winds show the presence of a sea breeze during the NE monsoon season and transition period, and its absence during the SW monsoon season. In the winter period, the synoptic flow is northeasterly (offshore) and it weakens the sea breeze (onshore flow) resulting in less diurnal variation, while during the transition period, the synoptic flow is onshore and it intensifies the sea breeze. During the northeast monsoon at an altitude of above 750 m, the wind direction reverses, and this is the upper return current, indicating the vertical extent of the sea breeze. A well-developed land sea breeze circulation occurs during the transition period, with vertical extension of 300 and 1,100 m, respectively.  相似文献   

8.
Simulation of South American wintertime climate with a nesting system   总被引:1,自引:1,他引:1  
A numerical nesting system is developed to simulate wintertime climate of the eastern South Pacific-South America-western South Atlantic region, and preliminary results are presented. The nesting system consists of a large-scale global atmospheric general circulation model (GCM) and a regional climate model (RCM). The latter is driven at its boundaries by the GCM. The particularity of this nesting system is that the GCM itself has a variable horizontal resolution (stretched grid). Our main purpose is to assess the plausibility of such a technique to improve climate representation over South America. In order to evaluate how this nesting system represents the main features of the regional circulation, several mean fields have been analyzed. The global model, despite its relatively low resolution, could simulate reasonably well the more significant large-scale circulation patterns. The use of the regional model often results in improvements, but not universally. Many of the systematic errors of the global model are also present in the regional model, although the biases tend to be rectified. Our preliminary results suggest that nesting technique is a computationally low-cost alternative for simulating regional climate features. However, additional simulations, parametrizations tuning and further diagnosis are clearly needed to represent local patterns more precisely. Received: 18 February 1999 / Accepted: 31 May 2000  相似文献   

9.
Summary Data from tide gauges (1990–1999) at Bandar Abbas and Bushehr combined with atmospheric data at both stations are utilized to investigate the mean sea-level (MSL) response to meteorological forcing functions along the north coast of the Persian Gulf. The relations between MSL and forces due to air pressure, air temperature and local wind are examined. The characteristics of variability of each field are analyzed using the spectral analysis method. The annual cycle is dominant in the sea-level, atmospheric pressure, air temperature and wind spectra. The influence of local meteorological functions are quantified using forward stepwise regression techniques. The results suggest that 71.5% and 71.2% variations in the MSL of Bandar Abbas and Bushehr stations are due to meteorological forces at each stations. The model indicates that the most significant influence on the observed variation of MSL at Bandar Abbas is air pressure, while at Bushehr is air temperature. The results of multivariate and simple regression show that these parameters are highly intercorrelated. The sea-level is not significantly correlated with the monthly and winter NAO and Monsoon in the Persian Gulf. The remaining variations are due to density of sea water (steric effect), which has considerable influence on the sea-level variations, and coastal upwelling.  相似文献   

10.
Using both empirical and numerical ensemble approaches this study focuses on the Mediterranean/West African relationship in northern summer. Statistical analyses utilize skin temperature, sea surface temperature, in situ and satellite rainfall, outgoing longwave radiation (OLR) observations and reanalyzed data winds and specific humidity on isobaric surfaces. Numerical investigations are based on a large set of sensitivity experiments performed on four atmospheric general circulation models (AGCM): ARPEGE-Climat3, ECHAM4, LMDZ4 and UCLA7.3. Model outputs are compared to observations, discussed model by model and with an ensemble (multi-model) approach. As in previous studies the anomalous Mediterranean warm events are associated with specific impacts over the African monsoon region, i.e., a more intense monsoon, enhanced flux convergence and ascendances around the ITCZ, a strengthening of low level moisture advection and a more northward location of ascending motion in West Africa. The results show also new features (1) thermal variability observed in the two Mediterranean basins has unalike impacts, i.e. the western Mediterranean covaries with convection in Gulf of Guinea, while the eastern Mediterranean can be interpreted as Sahelian thermal-forcing; (2) although observations show symmetry between warming and cooling, modelling evidences only support the eastern warming influence; (3) anomalous East warm situations are associated with a more northward migration of the monsoon system accompanied by enhanced southwertely flow and weakened northeasterly climatological wind; (4) the multi-model response shows that anomalous East warm surface temperatures generate an enhancement of the overturning circulation in low and high levels, an increase in TEJ (Tropical Eeasterly Jet) and a decrease in AEJ (African Eeasterly Jet).  相似文献   

11.
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75°, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5°, and finally the 2.5° NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5°. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125° ERA40 and 0.7° ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.  相似文献   

12.
By the numerical simulation,the sea surface temperature anomaly(SSTA)of the Pacific andIndian Oceans.being introduced into IAP AGCM,the observed anomalous circulationcharacteristics on the monthly mean 850 hPa have been confirmed:during an El Nino episode thereappears anomalous westerly flow in the low-level atmosphere over the low-latitude Pacific and theanomalous equatorward air flow over the Southeast Asia coast:during a La Nina episode thereappears anomalous easterly flow in the low-level atmosphere over the low-latitude Pacific and theanomalous off-equator air flow over the Southeast Asia coast.If we introduce only Pacific SSTAinto or take off orographic forcing from the model,the simulated anomalous air flow in the low-level atmosphere over the low latitudes will be different.The precipitation departure in conformitywith the observation over the low latitudes has been simulated with this model as well.  相似文献   

13.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ∼70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

14.
张海燕  陶丽  徐川 《大气科学》2022,46(4):859-872
本文利用1958~2018年期间海表面温度(SST)异常和湍流热通量异常变化的关系,探讨了其与北太平洋年代际振荡(PDO)相关的年际和年代际时间尺度上在不同海域的海气相互作用特征。结果表明:在年际尺度上,黑潮—亲潮延伸区(KOE)表现为显著大气强迫海洋,赤道中东太平洋表现为显著海洋强迫大气;在年代际尺度上,PDO北中心表现为大气强迫海洋,加利福尼亚附近则表现为显著海洋强迫大气。进一步分析表明:加利福尼亚附近区域是北太平洋准12年振荡的关键区域之一,与PDO准十年的周期类似,加利福尼亚附近的冷(暖)海温对应其上有反气旋(气旋)型环流,赤道中太平洋海水上翻和北太平洋东部副热带区域经向风应力的变化是北太平洋准12年振荡的另外两个重要环节。  相似文献   

15.
A scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach. A climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960–2099 period. For comparison, a control simulation as long as the scenario has also been carried out under present climate fluxes. This control run shows air–sea fluxes in agreement with observations, stable temperature and salinity characteristics and a realistic thermohaline circulation simulating the different intermediate and deep water masses described in the literature. During the scenario, warming and saltening are simulated for the surface (+3.1°C and + 0.48 psu for the Mediterranean Sea at the end of the twenty-first century) and for the deeper layers (+1.5°C and + 0.23 psu on average). These simulated trends are in agreement with observed trends for the Mediterranean Sea over the last decades. In addition, the Mediterranean thermohaline circulation (MTHC) is strongly weakened at the end of the twenty-first century. This behaviour is mainly due to the decrease in surface density and so the decrease in winter deep-water formation. At the end of the twenty-first century, the MTHC weakening can be evaluated as −40% for the intermediate waters and −80% for the deep circulation with respect to present-climate conditions. The characteristics of the Mediterranean Outflow Waters flowing into the Atlantic Ocean are also strongly influenced during the scenario.  相似文献   

16.
What shapes mesoscale wind anomalies in coastal upwelling zones?   总被引:1,自引:1,他引:0  
Observational studies have shown that mesoscale variations in sea surface temperature may induce mesoscale variations in wind. In eastern subtropical upwelling regions such as the California coast, this mechanism could be of great importance for the mean state and variability of the climate system. In coastal regions orography also creates mesoscale variations in wind, and the orographic effect may extend more than 100?km offshore. The respective roles of SST/wind links and coastal orography in shaping mesoscale wind variations in nearshore regions is not clear. We address this question in the context of the California Upwelling System, using a high-resolution regional numerical modeling system coupling the WRF atmospheric model to the ROMS oceanic model, as well as additional uncoupled experiments to quantify and separate the effects of SST/wind links and coastal orography on mesoscale wind variations. After taking into account potential biases in the representation of the strength of SST/wind links by the model, our results suggest that the magnitude of mesoscale wind variations arising from the orographic effects is roughly twice that of wind variations associated with mesoscale SST anomalies. This indicates that even in this region where coastal orography is complex and leaves a strong imprint on coastal winds, the role of SST/winds links in shaping coastal circulation and climate cannot be neglected.  相似文献   

17.
A methodology is developed for testing the downscaling ability of nested regional climate models (RCMs). The proposed methodology, nick-named the Big-Brother Experiment (BBE), is based on a "perfect-prognosis" approach and hence does not suffer from model errors nor from limitations in observed climatologies. The BBE consists in first establishing a reference climate by performing a large-domain high-resolution RCM simulation: this simulation is called the Big Brother. This reference simulation is then degraded by filtering short scales that are unresolved in today's global objective analyses (OA) and/or global climate models (GCMs) when integrated for climate projections. This filtered reference is then used to drive the same nested RCM (called the Little Brother), integrated at the same high-resolution as the Big Brother, but over a smaller domain that is embedded in the Big-Brother domain. The climate statistics of the Little Brother are then compared with those of the Big Brother over the Little-Brother domain. Differences can thus be attributed unambiguously to errors associated with the nesting and downscaling technique, and not to model errors nor to observation limitations. The results of the BBE applied to a one-winter-month simulation over eastern North America at 45-km grid-spacing resolution show that the one-way nesting strategy has skill in downscaling large-scale information to the regional scales. The time mean and variability of fine-scale features in a number of fields, such as sea level pressure, 975-hPa temperature and precipitation are successfully reproduced, particularly over regions where small-scale surface forcings are strong. Over other regions such as the ocean and away from the surface, the small-scale reproducibility is more difficult to achieve.  相似文献   

18.
A coastal shallow water model generally involves at least one coastal boundary which is curvilinear in nature. Representation of this curvilinear boundary needs special attention when a finite difference scheme is used. To incorporate the curvilinear coastal boundary and off-shore islands properly in the numerical scheme, we need fine resolution which may not be necessary away from the coast. In order to tackle this problem, a nested numerical scheme may be used where fine resolution for the coastal boundary region is nested into a course resolution scheme covering the whole analysis area. But this involves comparatively more memory and CPU time in the solution process. The present study aims at developing a storm surge model that may subsequently be modified for operational forecasting purpose for the coast of Bangladesh. A vertically integrated model is developed in a cylindrical polar coordinate system capable of incorporating bending of the coastline and off-shore islands with considerable accuracy without using any nesting. A comparison of CPU time and memory in the numerical computations between two types of modelling is described and it is found that the cylindrical polar coordinates model is economic. The model is applied for estimating the water levels at different coastal and island stations associated with a few storms that hit the coast of Bangladesh. It is found that the computed and observed water levels are in good agreement. Considering the computing time and other factors, it is found that the Polar Coordinates model is more suitable for operational forecasting purpose along the coast of Bangladesh.  相似文献   

19.
We explored the variability of the Egyptian shelf zone circulation connected to atmospheric forcing by means of a numerical simulation of the general circulation. A high resolution model grid was used at 1/60° horizontal resolution and 25 sigma layers. The simulation was carried out using the most recent version of the Princeton Ocean Model (POM). The initialised model was run the whole year of 2006 using the analysis forcing data for the same year obtained from ECMWF and MFS (Mediterranean Forecasting System, Pinardi et al., 2003). The model skills were evaluated by means of the root mean square error (RMSE) and correlations. The Egyptian Shelf Model (EGYSHM) simulation suggests the presence of an Egyptian Shelf Slope Current (ESSC), which is flowing eastward at different depths in the domain. We found that the maximum velocity of the ESSC [0.25 m/s] is located near the continental slope during the summer time, while in winter the velocity of ESSC is weaker [0.12 m/s] in the same location. The ESSC appears to be directly affected by Mersa-Matruh gyre system. EGYSHM reproduced the main region circulation patterns, especially after adding the Nile River outflow. We found that wind stress is crucial to force the circulation of the Egyptian shelf zone. EGYSHM SST was significantly correlated to satellite SST in all months at a 95% confidence limit, with a maximum of 0.9743 which was obtained in May 2006. The RMSE between EGYSHM and Argo floats salinity data was about 0.09. We compared our results with satellite altimetry to verify the positions and shapes of mesoscale features.  相似文献   

20.
Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号