首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. (Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5?–?0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.  相似文献   

2.
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 – 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.  相似文献   

3.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   

4.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this study, we advance the scenario for serpentine flux emergence.  相似文献   

6.
We study the relationship between full-disk solar radiative flux at different wavelengths and average solar photospheric magnetic-flux density, using daily measurements from the Kitt Peak magnetograph and other instruments extending over one or more solar cycles. We use two different statistical methods to determine the underlying nature of these flux – flux relationships. First, we use statistical correlation and regression analysis and show that the relationships are not monotonic for total solar irradiance and for continuum radiation from the photosphere, but are approximately linear for chromospheric and coronal radiation. Second, we use signal theory to examine the flux – flux relationships for a temporal component. We find that a well-defined temporal component exists and accounts for some of the variance in the data. This temporal component arises because active regions with high magnetic-field strength evolve, breaking up into small-scale magnetic elements with low field strength, and radiative and magnetic fluxes are sensitive to different active-region components. We generate empirical models that relate radiative flux to magnetic flux, allowing us to predict spectral-irradiance variations from observations of disk-averaged magnetic-flux density. In most cases, the model reconstructions can account for 85 – 90% of the variability of the radiative flux from the chromosphere and corona. Our results are important for understanding the relationship between magnetic and radiative measures of solar and stellar variability.  相似文献   

7.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

8.
Parnell  C.E. 《Solar physics》2001,200(1-2):23-45
There are four key processes that dictate the behaviorof the magnetic flux concentrations that form the so-called `magnetic carpet' of the quiet photosphere. These processes are emergence, cancellation, coalescence, and fragmentation. Rates of emergence have been estimated from observations, but the rates of cancellation, coalescence, and fragmentation are much more difficult to determine observationally. A model is set up to simulate an area of magnetic carpet in the quiet Sun. In the model there are three imposed parameters: the rate of emergence of new flux, the distribution of emerged flux and the rate of fragmentation of flux concentrations. The rate of cancellation and the rate of coalescence are deduced from the model. From the simulations it is estimated that the average emergence rate of new flux in the quiet Sun must be between 6×10–6 and 10– 5 Mx cm–2 s–1 to maintain an absolute flux density of between 2.5 and 3 G. For this rate of emergence a fragmentation rate of more than 12×10–5 s–1 is required to produce the observed exponential index for the number density of flux concentrations. This is equivalent to each fragment canceling more than once every 200 minutes. The rate of cancellation is calculated from the model and is found naturally to be equivalent to the rate of emergence. However, it is found that the frequency of cancellation is much greater than the frequency of emergence. In fact, it is likely that there are several orders of magnitude more cancellation events than emergence events. This implies that flux is injected in relatively large concentrations whereas cancellation occurs though the disappearance of many small concentrations.  相似文献   

9.
Zhang  Jun  Lin  Ganghua  Wang  Jingxiu  Wang  Haimin  Zirin  Harold 《Solar physics》1998,178(2):245-250
Using a 10-hour time sequence of very deep magnetograms of Big Bear Solar Observatory, we have studied the lifetime of Intranetwork Magnetic Elements for the first time. The analysis reveals the following results:(1) The lifetime of intranetwork elements ranges from 0.2 hr to 7.5 hr with the mean of 2.1 hr. There appears to be a quasi-linear dependence of the lifetime on the total flux of elements. (2) Most intranetwork elements appear as a cluster of mixed polarities from an emergence center somewhere within the network boundary and are destroyed by three mechanisms: merging with intranetwork or network elements of the same polarity, cancellation of opposite polarity elements, or separation and disappearance at the position where they appear. (3) We estimate that the total energy released from the recycling of IN elements isinebreak1.6 × 1028 ergs s-1, which seems to be comparable to the energy required to heat the corona.  相似文献   

10.
Martin  Sara F. 《Solar physics》1998,182(1):107-137
Observational conditions for the formation and maintenance of filaments are reviewed since 1989 in the light of recent findings on their structure, chirality, inferred magnetic topology, and mass flows. Recent observations confirm the necessary conditions previously cited: (1) their location at a boundary between opposite-polarity magnetic fields (2) a system of overlying coronal loops, (3) a magnetically-defined channel beneath, (4) the convergence of the opposite-polarity network magnetic fields towards their common boundary within the channel and (5) cancellation of magnetic flux at the common polarity boundary. Evidence is put forth for three additional conditions associated with fully developed filaments: (A) field-aligned mass flows parallel with their fine structure (B) a multi-polar background source of small-scale magnetic fields necessary for the formation of the filament barbs and (C) a handedness property known as chirality which requires them to be either of two types, dextral or sinistral. One-to-one relationships have been established between the chirality of filaments and the chirality of their filament channels and overlying coronal arcades. These findings reinforce earlier evidence that every filament magnetic field is separate from the magnetic field of the overlying arcade but both are parts of a larger magnetic field system. The larger system has at least quadrupolar footprints in the photosphere and includes the filament channel and subphotospheric magnetic fields, This ‘systems’ view of filaments and their environment enables new perspectives on why arcades and channels are invariable conditions for their existence. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005026814076  相似文献   

11.
Very Large Array (VLA) observations at 91-cm wavelength are combined with data from the SOHO EIT, MDI and LASCO and used to study the evolving coronal magnetic environment in which Type I noise storms and large-scale coronal loops occur. On one day, we have shown the early evolution of a coronal mass ejection (CME) in projection in the disk by tracing its decimetric continuum emission. The passage of the CME and an associated EUV ejection event coincided with an increase in the 91-cm brightness temperature of an extended coronal loop located a significant distance away and with the displacement of the 91-cm source during the early stage of the CME. We suggest that the energy deposited into the corona by the CME may have caused a local increase in the thermal or nonthermal electron density or in the electron temperature in the middle corona resulting in a transient increase in the brightness of the 91-cm loop. On a second observing day, we have consolidated the known association between magnetic changes in the photosphere and low corona with noise storm enhancements in an overlying radio source well in advance of a flare event in the same region. We find anti-correlated changes in the brightness of a bipolar 91-cm Type I noise storm that appear to be associated with the cancellation and emergence of magnetic flux in the underlying photosphere. In this case, the evolving fields may have led to magnetic instabilities and reconnection in the corona and the acceleration of nonthermal particles that initiated and sustained the Type I noise storm.  相似文献   

12.
This study aims to quantify characteristic features of the bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack this problem, we use the Narrowband Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board Hinode; these data are from quiet and enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully coaligned in magnetic axis orientation. On average, the sampled IN ERs have a total maximum unsigned flux of several 1017 Mx, a separation of 3 – 4 arcsec, and a lifetime of 10 – 15 minutes. The smallest IN ERs have a maximum unsigned flux of several 1016 Mx, separations of less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage–growth or growth–shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magnetoconvection in the subphotospheric layer.  相似文献   

13.
We present the multiwavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space-based and ground-based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT, and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered near one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ≈0.15R with a speed of ≈90 km s−1 while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field, and the filled plasma moved towards the negative polarity field to the west of its activation site. We found the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved a couple of days earlier at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ≈12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards the PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.  相似文献   

14.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

15.
The hypothesis that solar flares may be caused by a choking off of the normal energy flux to the corona by the strong closed magnetic fields of a plage is examined. If the energy flux into a plage from the photosphere is of the order of 108 ergs/cm2 sec, and if a substantial fraction of this energy is carried in the form of Alfvén waves, then the rate of dissipation of the waves is slower than the rate at which energy is injected. Since the waves must propagate along the magnetic field and cannot reenter the photosphere, they must remain within the plage; hence, the magnetic and kinetic energy in a small-scale motion (either waves, turbulence, or high-energy particles) must increase with time, eventually causing disruption of the volume when the small-scale energy density exceeds the energy in the mean field. It is believed that the unusually broad wings in the emission lines represent evidence of this phenomenon. The accumulation of waves is manifested as a resonance which occurs initially only at discrete locations in the magnetic field, but later is expected to involve the whole flare volume. The response of a typical volume of flare dimensions due to a trapping of the normal wave supply to the corona is studied through use of the virial equation. For magnetic fields typical of a plage, the region expands in a time scale of 102–103 sec, with a velocity in the neighborhood of 10–20 km/sec. Small-scale velocities within the region, however, have reached 100–300 km/sec, indicating that almost all the energy in the flare resides in small-scale forms. The energy density of the flare region exhibits a behavior much more explosive than the expansion rate. There is a rapid rise to maximum in 102 sec or less, and a slow subsequent decline taking about 103–104 sec due to the dilution of energy caused by expansion of the region. The predicted temporal behavior of the energy density coincides qualitatively with the light curves observed during flares, and it is suggested that the rise and decline of the energy density is to be associated with the optical flare. The total flare is defined as the time required for the energy density of the chromosphere and corona to return to the pre-flare state. During this time (about one hour) a large flare can derive the necessary 1032 ergs from normal photospheric energy output.  相似文献   

16.
Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales with the magnetic Prandtl number in power law fashion with an exponent of approximately 0.6. Over six orders of magnitude in the magnetic Prandtl number the magnetic field is found tobe sustained by large‐scale dynamo action of alphasquared type. This work extends a similar finding for small magnetic Prandtl numbers to the regime of large magnetic Prandtl numbers. At large magnetic Prandtl numbers, most of the energy is dissipated viscously, lowering thus the amount of magnetic energy dissipation, which means that simulations can be performed at magnetic Reynolds numbers that are large compared to the usual limits imposed by a given resolution. This is analogous to an earlier finding that at small magnetic Prandtl numbers, most of the energy is dissipated resistively, lowering the amount of kinetic energy dissipation, so simulations can then be performed at much larger fluid Reynolds numbers than otherwise. The decrease in magnetic energy dissipation at large magnetic Prandtl numbers is discussed in the context of underluminous accretion found in some quasars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study a time – latitudinal distribution of CMEs observed by the SOHO spacecraft, their projected speeds and associated magnetic fields, as well as the north – south (N – S) asymmetry of solar surface magnetic fields, and the coronal green line intensities. We have found that (a) there exists an intricate relation between the average projected velocity of CMEs and the mean value of large-scale magnetic fields; (b) there exists a pronounced N – S asymmetry in both the distribution and the number of CMEs; (c) this asymmetry is in favor of the northern hemisphere at the beginning of the cycle, and of the southern hemisphere from 2001 onward, being, in fact, (d) closely related with the N – S asymmetry in the distribution of large-scale magnetic fields and the coronal green line intensities.  相似文献   

18.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

19.
As demonstrated by many previous studies, a system consisting of an isolated coronal flux rope and a surrounding background magnetic field exhibits a catastrophic behavior. In particular, if the magnetic field of the system is force-free and axisymmetric in spherical geometry, the magnetic energy at the catastrophic point, referred to as the catastrophic energy threshold, is found to be larger than the corresponding partly or fully open field energy. This paper takes an octapole field as the background and introduces a flux rope within the central arcade of the octapole field. A relaxation method based on time-dependent ideal magnetohydrodynamic (MHD) simulations is used to find axisymmetric force-free field solutions in spherical geometry associated with the flux rope system. With respect to an increase of either the annular flux Φp or the axial flux Φϕ of the rope, the system exhibits a catastrophic behavior as expected, and the catastrophic energy threshold is larger than that of the corresponding partly open field, in which the central arcade is opened up, but the remainder remains closed. For a given octapole field, the energy threshold depends on either Φp or Φϕ at the catastrophic point, and it increases with increasing Φp or decreasing Φϕ. On the other hand, the extent to which the central bipolar component of the octapole field is open also affects the energy threshold. These results differ from those for the bipolar background field case, in which the catastrophic energy threshold is almost independent of the magnetic properties of the flux rope at the catastrophic points and the extent to which the background field is open. The reason for such a difference is briefly discussed.  相似文献   

20.
High-cadence TRACE observations show that outward-propagating intensity disturbances are a common feature in large, quiescent coronal loops. Analysis of the frequency distribution of these modes shows peaks at both three- and five-minute periods, indicating that they may be driven by the solar surface oscillations (p modes). The energy flux contained within the coronal intensity disturbances is of the order of (1.1±0.4)×103 ergs cm−2 s−1. A simple order-of-magnitude estimate of the damping rate of the relevant p modes allows us to put an observational constraint on the damping of p modes and shows that leakage into the overlying coronal atmosphere might be able to account for a significant fraction of p-mode damping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号